K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 10 2021

a: Ta có: \(x=\sqrt{28-16\sqrt{3}}+2\sqrt{3}\)

\(=4-2\sqrt{3}+2\sqrt{3}\)

=4

Thay x=4 vào B, ta được:

\(B=\dfrac{2-4}{2}=-1\)

18 tháng 6 2023

\(\left(\dfrac{3\sqrt{x}+6}{x-4}+\dfrac{\sqrt{x}}{\sqrt{x}-2}\right):\dfrac{x-9}{\sqrt{x}-3}\left(dkxd:x\ne9,x\ne4,x\ge0\right)\)

\(=\left(\dfrac{3\sqrt{x}+6}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\dfrac{\sqrt{x}}{\sqrt{x}-2}\right):\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}{\sqrt{x}-3}\)

\(=\left(\dfrac{3\sqrt{x}+6+\sqrt{x}\left(\sqrt{x}+2\right)}{(\sqrt{x}-2)\left(\sqrt{x}+2\right)}\right).\dfrac{1}{\sqrt{x}+3}\)

\(=\dfrac{3\sqrt{x}+6+x+2\sqrt{x}}{x-4}.\dfrac{1}{\sqrt{x}+3}\)

\(=\dfrac{x+5\sqrt{x}+6}{x-4}.\dfrac{1}{\sqrt{x}+3}\)

\(=\dfrac{x+2\sqrt{x}+3\sqrt{x}+6}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}.\dfrac{1}{\sqrt{x}+3}\)

\(=\dfrac{\sqrt{x}\left(\sqrt{x}+2\right)+3\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}.\dfrac{1}{\sqrt{x}+3}\)

\(=\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}.\dfrac{1}{\sqrt{x}+3}\)

\(=\dfrac{1}{\sqrt{x}-2}\)

7 tháng 6 2023

\(1,P=\left(\dfrac{\sqrt{x}}{3+\sqrt{x}}+\dfrac{2x}{9-x}\right):\left(\dfrac{\sqrt{x}-1}{x-3\sqrt{x}}-\dfrac{2}{\sqrt{x}}\right)\left(dkxd:x\ge0,x\ne9\right)\)

\(=\left(\dfrac{\sqrt{x}}{\sqrt{x}+3}-\dfrac{2x}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\right):\left(\dfrac{\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-3\right)}-\dfrac{2}{\sqrt{x}}\right)\)

\(=\dfrac{\sqrt{x}\left(\sqrt{x}-3\right)-2x}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}:\dfrac{\sqrt{x}-1-2\left(\sqrt{x}-3\right)}{\sqrt{x}\left(\sqrt{x}-3\right)}\)

\(=\dfrac{x-3\sqrt{x}-2x}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}.\dfrac{\sqrt{x}\left(\sqrt{x}-3\right)}{\sqrt{x}-1-2\sqrt{x}+6}\)

\(=\dfrac{-x-3\sqrt{x}}{\left(\sqrt{x}+3\right)}.\dfrac{\sqrt{x}}{-\sqrt{x}+5}\)

\(=\dfrac{-\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)}.\dfrac{\sqrt{x}}{5-\sqrt{x}}\)

\(=-\dfrac{x}{5-\sqrt{x}}\)

\(2,x=\sqrt{7+4\sqrt{3}}+\sqrt{7-4\sqrt{3}}\)

\(=\sqrt{\left(2+\sqrt{3}\right)^2}+\sqrt{\left(2-\sqrt{3}\right)^2}\)

\(=\left|2+\sqrt{3}\right|+\left|2-\sqrt{3}\right|\)

\(=2+\sqrt{3}+2-\sqrt{3}=4\)

\(x=4\Rightarrow P=-\dfrac{4}{5-\sqrt{4}}=\dfrac{-4}{5-2}=-\dfrac{4}{3}\)

7 tháng 6 2023

cảm ơn bạn nha!

AH
Akai Haruma
Giáo viên
11 tháng 4 2023

Lời giải:

$A=\frac{10\sqrt{x}}{(\sqrt{x}-1)(\sqrt{x}+4)}-\frac{(2\sqrt{x}-3)(\sqrt{x}-1)}{(\sqrt{x}+4)(\sqrt{x}-1)}-\frac{(\sqrt{x}+1)(\sqrt{x}+4)}{(\sqrt{x}-1)(\sqrt{x}+4)}$

$=\frac{10\sqrt{x}-(2\sqrt{x}-3)(\sqrt{x}-1)-(\sqrt{x}+1)(\sqrt{x}+4)}{(\sqrt{x}+4)(\sqrt{x}-1)}$

$=\frac{-3x+10\sqrt{x}-7}{(\sqrt{x}+4)(\sqrt{x}-1)}$

$=\frac{-(\sqrt{x}-1)(3\sqrt{x}-7)}{(\sqrt{x}+4)(\sqrt{x}-1)}=\frac{7-3\sqrt{x}}{\sqrt{x}+4}$

23 tháng 7 2023

\(a,=\sqrt{\left(\sqrt{3}\right)^2+2.\sqrt{3}.\sqrt{2}+\left(\sqrt{2}\right)^2}-\sqrt{\left(\sqrt{3}\right)^2-2.\sqrt{3}.\sqrt{2}+\left(\sqrt{2}\right)^2}\\ =\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}-\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}\\ =\left|\sqrt{3}+\sqrt{2}\right|-\left|\sqrt{3}-\sqrt{2}\right|\\ =\sqrt{3}+\sqrt{2}-\left(\sqrt{3}-\sqrt{2}\right)\\ =\sqrt{3}+\sqrt{2}-\sqrt{3}+\sqrt{2}\\=2\sqrt{2} \)

\(b,=\sqrt{\left(\sqrt{3}\right)^2+2.\sqrt{3}.1+1}+\sqrt{\left(\sqrt{3}\right)^2-2.\sqrt{3}.1+1}\\ =\sqrt{\left(\sqrt{3}+1\right)^2}+\sqrt{\left(\sqrt{3}-1\right)^2}\\ =\left|\sqrt{3}+1\right|+\left|\sqrt{3}-1\right|\\ =\sqrt{3}+1+\sqrt{3}-1\\ =2\sqrt{3}\)

\(c,=x-4+\sqrt{\left(4^2-2.4.x+x^2\right)}\\ =x-4+\sqrt{\left(4-x\right)^2}\\ =x-4+\left|4-x\right|\\ =x-4+x-4=2x-8\)    (vì \(x>4\) )

@seven 

23 tháng 7 2023

thanks you very much

a: \(=6+2\sqrt{11}-4+\sqrt{11}=2+3\sqrt{11}\)

b: \(=\dfrac{3x+9\sqrt{x}-2x+4\sqrt{x}}{\left(\sqrt{x}+3\right)\left(x-2\sqrt{x}\right)}\cdot\dfrac{\left(\sqrt{x}+3\right)^2}{\sqrt{x}+13}=\dfrac{\sqrt{x}+3}{x-2\sqrt{x}}\)

6 tháng 2 2022

nhờ bạn có thể giải chi tiết cho mình câu 1b đc ko

10 tháng 11 2021

a.\(A=\dfrac{x^2-4x+4}{x^3-2x^2-\left(4x-8\right)}=\dfrac{\left(x-2\right)^2}{x^2\left(x-2\right)-4\left(x-2\right)}=\dfrac{\left(x-2\right)^2}{\left(x^2-4\right)\left(x-2\right)}=\dfrac{x-2}{\left(x-2\right)\left(x+2\right)}=\dfrac{1}{x+2}\)

 

10 tháng 11 2021

\(A=\dfrac{\left(x-2\right)^2}{x^2\left(x-2\right)-4\left(x-2\right)}\left(x\ne\pm2\right)\\ A=\dfrac{\left(x-2\right)^2}{\left(x-2\right)^2\left(x+2\right)}=\dfrac{1}{x+2}\\ B=\dfrac{x+2-x+\sqrt{x}-1}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\cdot\dfrac{4\sqrt{x}}{3}\left(x>0\right)\\ B=\dfrac{4\sqrt{x}\left(\sqrt{x}+1\right)}{3\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}=\dfrac{4\sqrt{x}}{3\left(x-\sqrt{x}+1\right)}\)

13 tháng 10 2021

\(a,A=\dfrac{2\sqrt{x}-2+2\sqrt{x}+x-3\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-1\right)}\left(x\ge0;x\ne1;x\ne9\right)\\ A=\dfrac{x+\sqrt{x}-2}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-1\right)}=\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-1\right)}=\dfrac{\sqrt{x}+2}{\sqrt{x}-3}\)

\(b,A\in Z\Leftrightarrow\dfrac{\sqrt{x}-3+5}{\sqrt{x}-3}\in Z\Leftrightarrow1+\dfrac{5}{\sqrt{x}-3}\in Z\\ \Leftrightarrow\sqrt{x}-3\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\\ Mà.x\ge0\\ \Leftrightarrow\sqrt{x}\in\left\{2;4;8\right\}\\ \Leftrightarrow x\in\left\{4;16;64\right\}\)

13 tháng 10 2021

a) ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne9\\x\ne1\end{matrix}\right.\)

\(A=\dfrac{2\sqrt{x}-2+2\sqrt{x}+x-3\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-1\right)}=\dfrac{x+\sqrt{x}-2}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-1\right)}=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-3\right)}=\dfrac{\sqrt{x}+2}{\sqrt{x}-3}\)

b) \(A=\dfrac{\sqrt{x}+2}{\sqrt{x}-3}=1+\dfrac{5}{\sqrt{x}-3}\in Z\)

\(\Rightarrow\sqrt{x}-3\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\)

Kết hợp đk

\(\Rightarrow x\in\left\{4;16;64\right\}\)

7 tháng 5 2022

mik cần gấp ạ^^

 

5 tháng 8 2023

a) Thay x=25 vào B ta có:

\(B=\dfrac{\sqrt{25}+2}{\sqrt{25}-2}=\dfrac{7}{3}\)

b) \(A=\dfrac{\sqrt{x}+3}{\sqrt{x}-2}+\dfrac{\sqrt{x}+2}{3-\sqrt{x}}+\dfrac{2\sqrt{x}-1}{x-5\sqrt{x}+6}\)

\(A=\dfrac{\sqrt{x}+3}{\sqrt{x}-2}-\dfrac{\sqrt{x}+2}{\sqrt{x}-3}+\dfrac{2\sqrt{x}-1}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)

\(A=\dfrac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}+\dfrac{2\sqrt{x}-1}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)

\(A=\dfrac{x-9-x+4+2\sqrt{x}-1}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)

\(A=\dfrac{2\sqrt{x}-6}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)

\(A=\dfrac{2\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)

\(A=\dfrac{2}{\sqrt{x}-2}\)

c) Ta có: \(A>B\) Khi:

\(\dfrac{2}{\sqrt{x}-2}>\dfrac{\sqrt{x}+2}{\sqrt{x}-2}\)

\(\Leftrightarrow\dfrac{2}{\sqrt{x}-2}-\dfrac{\sqrt{x}+2}{\sqrt{x}-2}>0\)

\(\Leftrightarrow\dfrac{2-\sqrt{x}-2}{\sqrt{x}-2}>0\)

\(\Leftrightarrow\dfrac{-\sqrt{x}}{\sqrt{x}-2}>0\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left\{{}\begin{matrix}-\sqrt{x}< 0\\\sqrt{x}-2< 0\end{matrix}\right.\\\left\{{}\begin{matrix}-\sqrt{x}>0\\\sqrt{x}-2>0\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left\{{}\begin{matrix}x>0\\x< 4\end{matrix}\right.\\\left\{{}\begin{matrix}x< 0\\x>4\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow0< x< 4\)