K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 6 2019

\(D=\left(\sqrt{2}-1\right)\left(\sqrt{5}+1\right)\left(\sqrt{10}+\sqrt{5}-\sqrt{2}-1\right)\\ D=\left(\sqrt{10}-\sqrt{5}+\sqrt{2}-1\right)\left(\sqrt{10}+\sqrt{5}-\sqrt{2}-1\right)\\ D=\left(\sqrt{10}-1\right)^2-\left(\sqrt{5}-\sqrt{2}\right)^2\\ D=10-2\sqrt{10}+1-5+2\sqrt{10}-2\\ D=4\)

14 tháng 2 2019

\(x=\frac{1}{2}\sqrt{\sqrt{2}+\frac{1}{8}}-\frac{1}{8}\sqrt{2}\)

\(\Leftrightarrow x+\frac{\sqrt{2}}{8}=\frac{1}{2}\sqrt{\sqrt{2}+\frac{1}{8}}\)

\(\Leftrightarrow\left(x+\frac{\sqrt{2}}{8}\right)^2=\frac{1}{4}\left(\sqrt{2}+\frac{1}{8}\right)\)

\(\Leftrightarrow x^2+\frac{x\sqrt{2}}{4}+\frac{1}{32}=\frac{\sqrt{2}}{4}+\frac{1}{32}\)

\(\Leftrightarrow x^2+\frac{x\sqrt{2}}{4}-\frac{\sqrt{2}}{4}=0\)

\(\Leftrightarrow4x^2+x\sqrt{2}-\sqrt{2}=0\)(1)

\(\Leftrightarrow x\sqrt{2}=\sqrt{2}-4x^2\)

\(\Leftrightarrow x=1-2x^2\sqrt{2}\)

Thay vào M ta sẽ được

\(M=x^2+\sqrt{x^4+1-2x^2\sqrt{2}+1}\)

     \(=x^2+\sqrt{\left(x^2-\sqrt{2}\right)^2}\)

     \(=x^2+\left|x^2-\sqrt{2}\right|\)

Từ \(\left(1\right)\Rightarrow\sqrt{2}-x\sqrt{2}=4x^2\ge0\)

           \(\Leftrightarrow\sqrt{2}\left(1-x\right)\ge0\)

           \(\Leftrightarrow x\le1\)

           \(\Leftrightarrow x^2\le1< \sqrt{2}\)

           \(\Rightarrow\left|x^2-\sqrt{2}\right|=\sqrt{2}-x^2\)

Khi đó \(M=x^2+\left|x^2-\sqrt{2}\right|=x^2-\sqrt{2}+x^2=\sqrt{2}\)

|N|

21 tháng 6 2021

`a)(2sqrtx-9)/(x-5sqrtx+6)-(sqrtx+3)/(sqrtx-2)-(2sqrtx+1)/(3-sqrtx)(x>=0,x ne 4,x ne 9)`

`=(2sqrtx-9)/(x-5sqrtx+6)-(sqrtx+3)/(sqrtx-2)+(2sqrtx+1)/(sqrtx-3)`

`=(2sqrtx-9+(sqrtx-3)(sqrtx+3)+(2sqrtx+1)(sqrtx-2))/(x-5sqrtx+6)`

`=(2sqrtx-9+x-9+2x-3sqrtx-2)/(x-5sqrtx+6)`

`=(3x-sqrtx-20)/

21 tháng 6 2021

Lỗi nhẹ :v

1 tháng 12 2016
  • \(A=\sqrt{11-2\sqrt{10}}=\sqrt{\left(\sqrt{10}-1\right)^2}=\sqrt{10}-1\)
  • \(B=\left(\sqrt{28}-2\sqrt{4}+\sqrt{7}\right).\sqrt{7}+7\sqrt{7}=\left(2\sqrt{7}-2\sqrt{4}+\sqrt{7}\right).\sqrt{7}+7\sqrt{7}\)

\(=\left(3\sqrt{7}-4\right).\sqrt{7}+7\sqrt{7}=3\sqrt{7}+3\sqrt{7}=6\sqrt{7}\)

  • \(C=\sqrt{2+\sqrt{3}}+\sqrt{2-\sqrt{3}}=\frac{\sqrt{4+2\sqrt{3}}+\sqrt{4-2\sqrt{3}}}{\sqrt{2}}\)

\(=\frac{\sqrt{\left(\sqrt{3}+1\right)^2}+\sqrt{\left(\sqrt{3}-1\right)^2}}{\sqrt{2}}=\frac{2\sqrt{3}}{\sqrt{2}}=\sqrt{6}\)

  • \(D=0,2.\sqrt{10^2.3}+2\sqrt{\left(\sqrt{3}-\sqrt{5}\right)^2}=2\sqrt{3}+2\left(\sqrt{3}-\sqrt{5}\right)=4\sqrt{3}-2\sqrt{5}\)
2 tháng 8 2015

DÀi lắm 

28 tháng 10 2014

xin lỗi em mới lớp 8 ko trả lời dc

29 tháng 8 2020

\(ĐKXĐ:x\ge0\)

Ta có : \(D=\frac{2011x-2\sqrt{x}+1}{\sqrt{x}}=2011\sqrt{x}+\frac{1}{\sqrt{x}}-2\)

Theo BĐT AM - GM ta có :

\(2011\sqrt{x}+\frac{1}{\sqrt{x}}\ge2\sqrt{2011\sqrt{x}\cdot\frac{1}{\sqrt{x}}}=2\sqrt{2011}\)

\(\Rightarrow2011\sqrt{x}+\frac{1}{\sqrt{x}}-2\ge2\left(\sqrt{2011}-1\right)\)

Dấu "=" xảy ra \(\Leftrightarrow x=\frac{1}{2011}\)

Vậy \(D_{min}=2\left(\sqrt{2011}-1\right)\) tại \(x=\frac{1}{2011}\)