cho \(a^2+b^2=1\)
\(c^2+d^2=1\)
\(ac+bd=0\)
CMR \(ab+cd=0\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ac+bd=0 => (ac+bd)(bc+ad)=0
=> abc2 +a2cd+ b2cd+ abd2=0
=> cd(a2+b2)+ ab(c2+d2)=0
mà a2+b2=1; c2+d2=1 =>cd+ab=0
(đúng thì tk nha)
Ta có: \(\left(ac+bd\right)\left(bc+da\right)=0\)
\(\Leftrightarrow c^2ab+a^2cd+b^2cd+d^2ab=0\)
\(\Leftrightarrow ab\left(c^2+d^2\right)+cd\left(a^2+b^2\right)=0\)
Mà \(c^2+d^2=1\)\(a^2+b^2=1\)
\(\Rightarrow ab+cd=0\)
tham khảo : Câu hỏi của mangoes - Toán lớp 8 - Học toán với OnlineMath
k mik nha!
Địa chỉ mua bimbim : Số 38 đường NGuyễn Cảnh Chân TP Vinh Nghệ AN
Dựa vào a^2 +b^2 = 1 và c^2+ d^2 = 1 và ac + bd +0
Ta có ab + cd = ab.1 + cd.1 = ab.(c^2 + d^2) + cd.(a^2+b^2)
= abc^2 + abd^2 + cda^2 + cdb^2
= ac(bc + da) + bd(ad + cb) = (ac+bd).(bc+da) = 0 . (bc+da) = 0
Vậy ab + cd =
Ta có:
\(ab+cd=ab.1+cd.1\)
\(=ab\left(c^2+d^2\right)+cd\left(a^2+b^2\right)\)
\(=abc^2+abd^2+cda^2+cdb^2\)
\(=bc\left(ac+bd\right)+ad\left(bd+ac\right)\)
\(=bc.0+ad.0\)
\(=0\)
(ac+bd)(bc+ad)=0
<=> abc2+a2cd+b2cd+abd2=0
<=> ab(c2+d2)+cd(a2+b2)=0
<=>ab+cd=0
Bài 3 :
Gọi 4 số tự nhiên đó lần lượt là a; a + 1; a + 2; a + 3
Ta có biểu thức :
\(A=a\left(a+1\right)\left(a+2\right)\left(a+3\right)+1\)
\(A=\left[a\left(a+3\right)\right]\left[\left(a+1\right)\left(a+2\right)\right]+1\)
\(A=\left(a^2+3a\right)\left(a^2+3a+2\right)+1\)
Đặt \(x=a^2+3a+1\)ta có :
\(A=\left(x-1\right)\left(x+1\right)+1\)
\(A=x^2-1^2+1\)
\(A=x^2\left(đpcm\right)\)
bạn tham khảo
https://olm.vn/hoi-dap/detail/69212352329.html
nha
\(\left(a^2+b^2\right)\cdot\left(e^2+f^2\right)=\left(ae+bf\right)^2\)
\(ae+bf=0\Rightarrow\left(a^2+b^2\right)\cdot\left(e^2+f^2\right)=0^2=0\)
\(\Rightarrow ae=bf\)
\(\Rightarrow ab=ef\)
\(\Rightarrow ab+ef=0\)