Cho A= \(\sqrt{x^2-6x+9}-\sqrt{x^2+6x+9}\)
a, Tính A
b, tìm x khi A =1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,A=\sqrt{x^2-6x+9}-\sqrt{x^2+6x+9}.\)
\(A=\sqrt{\left(x-3\right)^2}-\sqrt{\left(x+3\right)^2}.\)
\(A=\left(x-3\right)-\left(x+3\right)\)
\(b,\) Ta có : \(A=1=\left(x-3\right)-\left(x+3\right)\)
\(\Leftrightarrow1=x-3-x-3\Leftrightarrow1=-6\left(ko\right)tm\)
Vậy ko có giá trị của x.
\(A=\sqrt{x^2-6x+9}-\sqrt{x^2+6x+9}\)
\(A=\sqrt{x^2-6x+3^2}-\sqrt{x^2+6x+3^2}\)
\(A=\sqrt{\left(x-3\right)^2}-\sqrt{\left(x+3\right)^2}\)
b)\(\sqrt{\left(x-3\right)^2}-\sqrt{\left(x+3\right)^2}=1\)
\(TH1:x-3>=0\)
\(< =>x+3>=0\)
\(\left|x-3\right|-\left|x+3\right|=1\)
\(x-3-x-3=1\)
\(-6=1\)(loại)
\(TH2:x-3< =0\)
\(x+3>=0\)
\(< =>\left|x-3\right|-\left|x+3\right|=1\)
\(3-x-x-3\)
\(-2x=1\)
\(x=-\frac{1}{2}\left(TM\right)\)
\(TH3:x-3< =0\)
\(x+3< =0\)
\(< =>\left|x-3\right|-\left|x+3\right|=1\)
\(3-x+X+3=1\)
\(6=1\)(loại)
\(< =>x=\left\{\frac{1}{2}\right\}\)để \(A=1\)
=\(\left|x-3\right|-\left|x+3\right|\)
*x>0
=x-3-x+3
=0
*x<0
=3-x-3+x
=0
a) Ta có:
\(A=2x+\sqrt{x^2-6x+9}\)
\(A=2x+\sqrt{\left(x-3\right)^2}\)
\(A=2x+\left|x-3\right|\)
Nếu \(x< 3\) thì: \(A=2x+3-x=x+3\)
Nếu \(x\ge3\) thì: \(A=2x+x-3=3x-3\)
b) Ta có: \(\left|x\right|=5\Leftrightarrow\orbr{\begin{cases}x=5\\x=-5\end{cases}}\)
Nếu x = 5: \(A=3\cdot5-3=12\)
Nếu x = -5: \(A=-5+3=-2\)
c) Ta có: \(A=2\Leftrightarrow\orbr{\begin{cases}x+3=2\\3x-3=2\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=\frac{5}{3}\left(ktm\right)\end{cases}}\)
Vậy x = -1
a) \(A=2x+\sqrt{x^2-6x+9}\)
\(=2x+\sqrt{\left(x-3\right)^2}\)
\(=2x+\left|x-3\right|\)
Với x ≥ 3 => A = 2x + x - 3 = 3x - 3
Với x < 3 => A = 2x + 3 - x = x + 3
b) | x | = 5 => x = ±5
Với x = 5 > 3 => A = 3.5 - 3 = 12
Với x = -5 < 3 => A = -5 + 3 = -2
c) A = 2
⇔ 2x + | x - 3 | = 2
⇔ | x - 3 | = 2 - 2x (*)
Với x ≥ 3
(*) ⇔ x - 3 = 2 - 2x
⇔ x + 3x = 2 + 3
⇔ 4x = 5
⇔ x = 5/4 ( ktm )
Với x < 3
(*) ⇔ 3 - x = 2 - 2x
⇔ -x + 2x = 2 - 3
⇔ x = -1 ( tm )
Vậy x = -1
a: \(f\left(x\right)=\sqrt{x^2-6x+9}=\sqrt{\left(x-3\right)^2}=\left|x-3\right|\)
\(f\left(-1\right)=\left|-1-3\right|=4\)
\(f\left(5\right)=\left|5-3\right|=\left|2\right|=2\)
b: f(x)=10
=>\(\left[{}\begin{matrix}x-3=10\\x-3=-10\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=13\\x=-7\end{matrix}\right.\)
c: \(A=\dfrac{f\left(x\right)}{x^2-9}=\dfrac{\left|x-3\right|}{\left(x-3\right)\left(x+3\right)}\)
TH1: x<3 và x<>-3
=>\(A=\dfrac{-\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}=\dfrac{-1}{x+3}\)
TH2: x>3
\(A=\dfrac{\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}=\dfrac{1}{x+3}\)
a) \(\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}=2\)
Đặt \(t=\sqrt{x-1}\left(ĐK:t\ge0\right)\Leftrightarrow x-1=t^2\Leftrightarrow x=t^2+1\)
pt \(\Leftrightarrow\sqrt{t^2+1+2t}+\sqrt{t^2+1-2t}=2\Leftrightarrow\sqrt{\left(t+1\right)^2}+\sqrt{\left(t-1\right)^2}=2\Leftrightarrow t+1+t-1=2\Leftrightarrow t=1\left(tm\right)\)
Với t=1 \(\Leftrightarrow\sqrt{x-1}=1\Leftrightarrow x-1=1\Leftrightarrow x=2\)
Câu b tương tự
a/ \(A=\sqrt{\left(x-3\right)^2}-\sqrt{\left(x+3\right)^2}=\left|x-3\right|-x-3\)
b/ \(A=1\Leftrightarrow\left|x-3\right|-x-3=1\)