K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 6 2019

ta thấy: \(\left(a-1\right)^2\ge0\forall a\Leftrightarrow a^2\ge2a-1\)

Tương tự, ta có: \(\hept{\begin{cases}a^2\ge2a-1\\b^2\ge2b-1\\c^2\ge2c-1\end{cases}}\Rightarrow a^2+b^2+c^2\ge2.\left(a+b+c\right)-3\)

\(\Rightarrow3+3\ge2.\left(a+b+c\right)\Leftrightarrow a+b+c\le3\)

22 tháng 10 2016

Đề sai rồi b

20 tháng 8 2023

Để chứng minh rằng biểu thức abc(1+a^2)(1+b^2)(1+c^2) nhỏ hơn hoặc bằng 8 khi a, b, c là các số dương và a + b + c = 3, chúng ta có thể sử dụng bất đẳng thức AM-GM (bất đẳng thức trung bình cộng - trung bình nhân).

Áp dụng bất đẳng thức AM-GM cho a, b, c ta có: (a + b + c)/3 >= (abc)^(1/3)

Vì a + b + c = 3, ta có: 3/3 >= (abc)^(1/3) 1 >= (abc)^(1/3) 1^3 >= abc 1 >= abc

Tiếp theo, chúng ta cần chứng minh rằng (1 + a^2)(1 + b^2)(1 + c^2) <= 8.

Áp dụng bất đẳng thức AM-GM cho (1 + a^2), (1 + b^2), (1 + c^2) ta có: (1 + a^2 + 1 + b^2 + 1 + c^2)/3 >= ((1 + a^2)(1 + b^2)(1 + c^2))^(1/3)

Vì a^2 + b^2 + c^2 >= 3 (bằng với bất đẳng thức Tchebyshev), ta có: (3 + a^2 + b^2 + c^2)/3 >= ((1 + a^2)(1 + b^2)(1 + c^2))^(1/3) (3 + a^2 + b^2 + c^2)/3 >= (3 + a^2 + b^2 + c^2)/3 1 >= ((1 + a^2)(1 + b^2)(1 + c^2))^(1/3) 1^3 >= (1 + a^2)(1 + b^2)(1 + c^2) 1 >= (1 + a^2)(1 + b^2)(1 + c^2)

Từ hai bất đẳng thức trên, ta có: abc(1 + a^2)(1 + b^2)(1 + c^2) <= 1 * 1 = 1

Do đó, khi a, b, c là các số dương và a + b + c = 3, ta có abc(1 + a^2)(1 + b^2)(1 + c^2) <= 1, và vì 1 nhỏ hơn hoặc bằng 8, nên ta có: abc(1 + a^2)(1 + b^2)(1 + c^2) <= 8.

Vậy, chúng ta đã chứng minh được rằng biểu thức abc(1 + a^2)(1 + b^2)(1 + c^2) nhỏ hơn hoặc bằng 8 khi a, b, c là các số dương và a + b + c = 3.

4 tháng 8 2016

bài toán cực trị có ẩn trong đoạn là pahir cẩn thận này @
\(0\le a,b,c\le1\)\(\Rightarrow a\left(1-a\right)\left(1-b\right)\ge0\Leftrightarrow a-ab-a^2+a^2b\ge0\)
\(\Leftrightarrow a^2b\ge ab+a^2-a\)
Tương tự \(b^2c\ge bc+b^2-b;c^2a\ge ca+c^2-c\)
\(\Rightarrow a^2b+b^2c+c^2a+1\ge1+bc+ca+ab-a-b-c+a^2+b^2+c^2\)
\(\ge\left(1-a\right)\left(1-b\right)\left(1-c\right)+abc+a^2+b^2+c^2\ge a^2+b^2+c^2\)
dấu = xảy ra \(\Leftrightarrow\left(a,b,c\right)\in\hept{ }\left(0,1,1\right),\left(0,0,1\right),\left(1,0,1\right)\left(1,1,0\right)\left(0,1,0\right),\left(1,0,0\right)\left\{\right\}\)

4 tháng 8 2016

Do : \(\hept{\begin{cases}a\le1\Rightarrow1-a\ge0\\b\le1\Rightarrow1-b\le0\\c\le1\Rightarrow1-c\le0\end{cases}\Rightarrow\left(1-a\right)\left(1-b\right)\left(1-c\right)\ge0}\)

6 tháng 4 2017

sai đề kìa

6 tháng 4 2017

bộ sai chỗ nào