C/minh bất đẳng thức sau:
\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\) với \(a,b>0\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,b>0\Rightarrow\frac{1}{a};\frac{1}{b}>0\)
\(\frac{1}{a}+\frac{1}{b}\ge\frac{2}{\sqrt{ab}}\ge\frac{2}{\frac{a+b}{2}}=\frac{4}{a+b}\)
\(\frac{a}{a+b}\)>= \(\frac{a}{a+a}\)= \(\frac{1}{2}\)( vì a + a >= a + b vì a >= b )
\(\frac{b}{b+c}\) >= \(\frac{b}{b+b}\)= \(\frac{1}{2}\)( vì b + b >= b + c vì b >= c )
\(\frac{c}{c+a}\)>= \(\frac{c}{c+c}\) = \(\frac{1}{2}\)( vì c + c >= c + a vì c>=0 )
Từ 3 điều này suy ra
\(\frac{a}{a+b}\)+ \(\frac{b}{b+c}\)+ \(\frac{c}{c+a}\)>= \(\frac{3}{2}\)
dễ dàng c/m (x+y+z)(1/x+1/y+1/z) \(\ge\) 9,dấu "=" khi x=y=z (*)
a/a+b +b/b+c +c/c+a >= 3/2
<=>(a/b+c + 1) + (b/c+a + 1) + (c/a+b + 1) >= 3/2+1+1+1
<=>(a+b+c)/(b+c) + (a+b+c)/(c+a) + (a+b+c)/(a+b) >= 9/2
<=>2(a+b+c)(1/b+c + 1/c+a + 1/a+b) >= 9/2
<=>[(b+c)+(c+a)+(a+b)](1/b+c + 1/c+a + 1/a+b) >= 9/2 (bđt (*))
Đặt: a + b = x; b + c = y; c + a = z
Thì ta có: x \(\ge\)z \(\ge\)y
Theo đề bài ta có:
\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\ge\frac{3}{2}\)
\(\Leftrightarrow\frac{a}{a+b}-\frac{1}{2}+\frac{b}{b+c}-\frac{1}{2}+\frac{c}{c+a}-\frac{1}{2}\ge0\)
\(\Leftrightarrow\frac{a-b}{2\left(a+b\right)}+\frac{b-c}{2\left(b+c\right)}+\frac{c-a}{2\left(c+a\right)}\ge0\)
\(\Leftrightarrow\frac{z-y}{2x}+\frac{x-z}{2y}+\frac{y-x}{2z}\ge0\)
\(\Leftrightarrow xy^2+yz^2+zx^2-x^2y-y^2z-z^2x\ge0\)
\(\Leftrightarrow\left(y-x\right)\left(z-y\right)\left(z-x\right)\ge0\)(1)
Mà ta lại có
\(\hept{\begin{cases}y-x\le0\\z-x\le0\\z-y\ge0\end{cases}}\)nên (1) đúng
\(\Rightarrow\)ĐPCM
Đấu = xảy ra khi x = y = z hay a = b = c
Đặt b+c=m
a+c=n
a+b=p
=>a+b+c =\(\frac{m+n+p}{2}\)
a=\(\frac{n+p-m}{2}\)
b=\(\frac{m+p-n}{2}\)
c=\(\frac{m+n-p}{2}\)
=>\(\frac{n+p-m}{2m}+\frac{m+n-p}{2n}+\frac{m+n-p}{2p}\)
=\(\frac{1}{2}\left(\frac{n}{m}+\frac{m}{n}\right)\) +\(\frac{1}{2}\left(\frac{p}{m}+\frac{m}{p}\right)\) +\(\frac{1}{2}\left(\frac{p}{n}+\frac{n}{p}\right)\) -\(\frac{3}{2}\) \(\ge\) \(\frac{3}{2}\)
Áp dụng BĐT Cosi cho 2 số \(\frac{n}{m};\frac{m}{n}\) ta được:
Từ chứng minh tiếp ....
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)+\frac{1}{2}\left(\frac{1}{b}+\frac{1}{c}\right)+\frac{1}{2}\left(\frac{1}{c}+\frac{1}{a}\right)\)
\(\ge\frac{1}{2}\frac{4}{a+b}+\frac{1}{2}\frac{4}{b+c}+\frac{1}{2}\frac{4}{c+a}\)
\(=\frac{2}{a+b}+\frac{2}{b+c}+\frac{2}{c+a}\)
Dấu "=" xảy ra <=> a = b = c
\(C=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\ge\frac{3}{2}\)
\(\Leftrightarrow\frac{a}{b+c}+1+\frac{b}{c+a}+1+\frac{c}{a+b}+1\ge\frac{3}{2}+1+1+1\)
\(\Leftrightarrow\frac{a+b+c}{b+c}+\frac{a+b+c}{c+a}+\frac{a+b+c}{a+b}\ge\frac{9}{2}\)
\(\Leftrightarrow\left(a+b+c\right)\left(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}\right)\ge\frac{9}{2}\)
\(\Leftrightarrow2\left(a+b+c\right)\left(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}\right)\ge9\)
\(\Leftrightarrow\left[\left(b+c\right)+\left(c+a\right)+\left(a+b\right)\right]\left(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}\right)\ge9\left(^∗\right)\)
Áp dụng bđt Cauchy :
\(\hept{\begin{cases}\left(b+c\right)+\left(c+a\right)+\left(a+b\right)\ge3\sqrt[3]{\left(b+c\right)\left(c+a\right)\left(a+b\right)}\\\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}\ge3\sqrt[3]{\frac{1}{\left(b+c\right)\left(c+a\right)\left(a+b\right)}}\end{cases}}\)
Nhân vế của các bđt ta được :
\(VT\left(^∗\right)\ge3\sqrt[3]{\left(b+c\right)\left(c+a\right)\left(a+b\right)}\cdot3\sqrt[3]{\frac{1}{\left(b+c\right)\left(c+a\right)\left(a+b\right)}}=9\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c\)
đặt b + c = x ; c + a = y ; a + b = z
\(\Rightarrow\)a + b + c = \(\frac{x+y+z}{2}\)
\(\Rightarrow a=\frac{y+z-x}{2};b=\frac{x+z-y}{2};c=\frac{x+y-z}{2}\)
\(\Rightarrow C=\frac{y+z-x}{2x}+\frac{x+z-y}{2y}+\frac{x+y-z}{2z}\)
\(C=\frac{1}{2}.\left(\frac{y}{x}+\frac{z}{x}+\frac{x}{y}+\frac{z}{y}+\frac{x}{z}+\frac{y}{z}-3\right)\ge\frac{1}{2}\left(6-3\right)=\frac{3}{2}\)
a) Áp dụng bất đẳng thức AM-GM :
\(\left(a^2+b^2\right)\left(a^2+1\right)\ge2\sqrt{a^2b^2}.2\sqrt{a^2}\ge2ab.2a=4a^2b\)
b) Áp dụng bất đẳng thức :\(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\forall x;y>0\)
\(\frac{1}{a+3b}+\frac{1}{b+2c+a}\ge\frac{4}{a+3b+b+2c+a}=\frac{4}{2a+4b+2c}=\frac{2}{a+2b+c}\)
Tương tự \(\hept{\begin{cases}\frac{1}{b+3c}+\frac{1}{c+2a+b}\ge\frac{2}{b+2c+a}\\\frac{1}{c+3a}+\frac{1}{a+2b+c}\ge\frac{2}{b+2a+c}\end{cases}}\)
Cộng vế với vế ta được : \(VT+VP\ge2VP\Rightarrow VT\ge VP\)(đpcm)
em học lớp 5 nên k hiểu được bài lớp 8 nhưng cứ comments,hi
a)có \(\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)=\left(a+b\right)\left(\frac{a+b}{ab}\right)\)\(=\frac{\left(a+b\right)^2}{ab}\Rightarrow\frac{\left(a+b\right)^2}{ab}-4=\frac{\left(a+b\right)^2-4ab}{ab}=\frac{\left(a-b\right)^2}{ab}\)\(\ge0\forall a;b>0\)
\(\Rightarrow\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)\ge4\)dấu''=''xảy ra khi a=b
b)B=\(\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}=\frac{a}{c}+\frac{b}{c}+\frac{b}{a}+\frac{c}{a}+\frac{c}{b}+\frac{a}{b}\)
=\(\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)+\left(\frac{c}{a}+\frac{a}{c}\right)\)mà ta có \(\frac{x}{y}+\frac{y}{x}-2=\frac{\left(x-y\right)^2}{xy}\ge0\forall x;y>0\)
\(\Rightarrow\frac{x}{y}+\frac{y}{x}\ge2\forall x;y>0\)áp dụng bđt trên ta có B\(\ge\)2+2+2=6
dấu ''=''xảy ra khi x=y=z
\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\) \(\left(a,b>0\right)\)
\(\Leftrightarrow\frac{a+b}{ab}\ge\frac{4}{a+b}\)
\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)
\(\Leftrightarrow a^2+2ab+b^2\ge4ab\)
\(\Leftrightarrow a^2-2ab+b^2\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\) (luôn đúng)
\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)
\(\Leftrightarrow\frac{a+b}{ab}\ge\frac{4}{a+b}\)
\(\Leftrightarrow\frac{a+b}{ab}-\frac{4}{a+b}\ge0\)
\(\Leftrightarrow\frac{\left(a+b\right)^2-4ab}{ab\left(a+b\right)}\ge0\)
\(\Leftrightarrow\frac{a^2+b^2+2ab-4ab}{ab\left(a+b\right)}\ge0\)
\(\Leftrightarrow\frac{a^2-2ab+b^2}{ab\left(a+b\right)}\ge0\)
\(\Leftrightarrow\frac{\left(a-b\right)^2}{ab\left(a+b\right)}\ge0\)
Vì a,b>0 nên \(\frac{\left(a-b\right)^2}{ab\left(a+b\right)}\ge0\)( bất dẳng thức đúng)
\(\Rightarrow\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)
Dấu '=' xảy ra khi a=b