K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 6 2019

Đặt \(A=x^2+2.|y-2|-1\)

Ta có: \(\hept{\begin{cases}x^2\ge0\forall x\\2.|y-2|\ge0\forall x\end{cases}}\)

\(\Rightarrow x^2+2.|y-2|\ge0\forall x,y\)

\(\Rightarrow x^2+2.|y-2|-1\ge0-1\forall x,y\)

Hay \(A\ge-1\forall x,y\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x^2=0\\y-2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\y=2\end{cases}}}\)

Vậy Min A=-1 \(\Leftrightarrow\hept{\begin{cases}x=0\\y=2\end{cases}}\)

22 tháng 6 2019

Vì \(x^2\ge0\)

   \(2\left|y-2\right|\ge0\)

\(\Rightarrow x^2+2\left|y-2\right|-1\ge-1\)

Vậy \(GTNN=-1\)tại \(x=0\)và \(y=2\)

12 tháng 11 2019

a) Ta có : \(A=\left|x+1\right|+\left|y-2\right|\)

\(\ge\left|x+1+y-2\right|\)

\(=\left|x+y-1\right|=\left|5-1\right|=\left|4\right|=4\)

Dấu "=" xảy ra <=> (x + 1)(y - 2) \(\ge\)0

Vậy Min A = 4 <=>  (x + 1)(y - 2) \(\ge\)0

NV
1 tháng 8 2021

\(y=x+\dfrac{1}{x}-5\ge2\sqrt{\dfrac{x}{x}}-5=-3\)

\(y_{min}=-3\) khi \(x=1\)

\(y=4x^2+\dfrac{1}{2x}+\dfrac{1}{2x}-4\ge3\sqrt[3]{\dfrac{4x^2}{2x.2x}}-4=-1\)

\(y_{min}=-1\) khi \(x=\dfrac{1}{2}\)

\(y=x+\dfrac{4}{x}\Rightarrow y'=1-\dfrac{4}{x^2}=0\Rightarrow x=-2\)

\(y\left(-2\right)=-4\Rightarrow\max\limits_{x>0}y=-4\) khi \(x=-2\)

7 tháng 4 2017

bài 1 chắc điểm rơi x=2;y=4, cách làm tạm thời mk chưa nghĩ ra

bài 2: P=(x^2+4y^2)/(x-2y)=[x^2+(2y)^2]/(x-2y)=[(x-2y)^2+4xy]/(x-2y)=(x-2y) + 4xy/(x-2y)=(x-2y)+4/(x-2y) do xy=1

Áp dụng bđt AM-GM , ta có P >/  4 =>minP=4

đẳng thức xảy ra khi đồng thời  x-2y=2,x>2y,xy=1 ,tự giải hệ này ra nhé

22 tháng 1 2022

Áp dụng Bất Đẳng Thức Trung Bình Cộng Và Trung Bình Nhân,ta có:

A=\(\left(\frac{x+1}{x}\right)^2+\left(\frac{y+1}{y}\right)^2\ge\frac{\left(x+y+\frac{1}{x}+\frac{1}{y}\right)^2}{2}\)

\(\Leftrightarrow\left(\frac{x+1}{x}\right)^2+\left(\frac{y+1}{x}\right)^2\ge\frac{\left(x+y+\frac{4}{x+y}\right)^2}{2}\)

Thay x+y=1 vào biểu thức \(\frac{\left(x+y+\frac{4}{x+y}\right)^2}{2}\)Ta được:

\(\frac{\left(1+4\right)^2}{2}=\frac{25}{2}\)

Vậy GTNN của A=\(\left(\frac{x+1}{x}\right)^2+\left(\frac{y+1}{y}\right)^2\)là \(\frac{25}{2}\)