1,
a,Chứng minh rằng:tích của ba số chẵn liên tiếp thì chia hết cho 48.
b,Chứng minh rằng:tích của bốn số chẵn liên tiếp chi hết cho 384
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nguồn : Câu hỏi của vodichbang - Toán lớp 6 - Học toán với OnlineMath
< https://olm.vn/hoi-dap/detail/27730911397.html >
gọi 4 số chẵn liên tiếp đó là: 2k;2k+2;2k+4;2k+6
ta có tích của 4 số đó là:
2k.(2k+2).(2k+4).(2k+6) =2.k.2.(k+1).2.(k+2).2.(k+3)
=24
.[k.(k+1).(k+2).(k+3)]
=16.[k.(k+1).(k+2)(k+3)]
lại có:
k;k+1;k+2;k+3 là 4 số tự nhiên liên tiếp nên:
+)Tồn tại 1 số chia hết cho 2 và 1 số chia hết cho 4=>k.(k+1).(k+2).(k+3) chia hết cho (2.4)=8
+Tồn tại số chia hết cho 3 =>k.(k+1).(k+2).(k+3) chia hết cho 3
Mà (3;8)=1 =>k.(k+1).(k+2).(k+3) chia hết cho (3.8)
k.(k+1).(k+2).(k+3) chia hết cho 24
=>16.[k.(k+1).(k+2)(k+3)] chia hết cho 24
mà 16.[k.(k+1).(k+2)(k+3)] chia hết cho 16
=>16.[k.(k+1).(k+2)(k+3)] chia hết cho (24.16)
=>16.[k.(k+1).(k+2)(k+3)] chia hết cho 384 (đpcm)
bạn hãy áp dụng công thức này mà làm: k.(k+1)....(k+n) luôn chia hết cho 1,2,...,n+1 biết k và n là số nguyên
gọi 2 số chẵn liên tiếp đó là: 2k,2k+2
2k.(2k+2)=4k(k+1) mà k(k+1) chia hết cho 2 suy ra 2k.(2k+2) chia hết cho 8
gọi 3 số chẵn liên tiếp đó là: 2k,2k+2,2k+4
2k.(2k+2)(2k+4)=8k(k+1)(k+2) mà k(k+1) chia hết cho 2 suy ra 2k.(2k+2)(2k+4) chia hết cho 16 (1)
k(k+1)(k+2) chia hết cho 3 suy ra 8k(k+1)(k+2) chia hết cho 3 suy ra 2k.(2k+2)(2k+4) chia hết cho 3 (2)
từ (1),(2) suy ra 2k.(2k+2)(2k+4) chia hết cho 48 do (16,3)=1
câu c, tương tự vậy
Gọi 2k ; 2k+2 là hai số chẵn liên tiếp với k là số nguyên
Tích của hai số này là 4k.(k+1)
Ta có k.(k+1) luôn chia hết cho 2 => 4k.(k+1) luôn chia hết cho 8
NHỚ K MÌNH NHA CHÚC BẠN HỌC GIỎI
Gọi hai số chẵn liên tieepslaf 2k và 2k+2(k thuộc N)
Ta có:2k.(k+2)=2k.2.(k+1)=4k.(k+1)
Vì k và k+1 là hai số tự nhiên liên tiếp nên k.(k+1)chia hết cho 2
do đó 4k.(k+1) chia hết cho 2.4
4k.(k+1) chia hết cho 8
Vậy tích hai số chẵn liên tiếp chia hết cho 8
3 dấu chia hết ở đầu bạn thay hộ mik là bằng dấu chia hết nhé
May cho bạn tối nay mk học toán :)) haha :v ko luyên tha luyên thuyên nx :)
\(n-9⋮n-3\Leftrightarrow\left(n-3\right)-\left(n-9\right)⋮n-3\Leftrightarrow6⋮n-3\)
\(\Leftrightarrow n-3\in\left\{-1;1;-2;2;-3;3;-6;6\right\}\)
\(\Leftrightarrow n\in\left\{2;4;1;5;0;6;-3;9\right\}\)
Câu 2:
Ta có: trong 3 số nguyên liên tiếp chẵn
=>3 số chia hết cho 2;ít nhất 1 số chia hết cho 4; 1 số chia hết cho 6
=> tích trên chia hết cho: 2.4.8 hay tích trên chia hết cho 48 (đpcm)
\(\left(n-9\right)⋮\left(n-3\right)\Rightarrow\left(n-3\right)-6⋮n-3\)
\(\Rightarrow6⋮n-3\Rightarrow n-3\inƯ\left(6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)
\(\Rightarrow n\in\left\{4;2;5;1;6;0;9;-3\right\}\)
Vậy....................
--> a.(a+1) là số chẵn --> a(a+1).(a+2) chia hết cho 2
--> a.(a+1).(a+2) là số chẵn --> a.(a+1).(a+2) chia hết cho 2
Vậy tích 3 STNLT thì chi hết cho 2(1)
1. TRƯỜNG HỢP 1 : a = 3.k
Ta có : a.(a+1).(a+2) = 3.k.(3.k+1).(3.k+2)chia hết cho 3
2. TRƯỜNG HỢP 2 : a = 3.k+1
Ta có : a.(a+1).(a+2) = (3.k+1).(3.k+2).(3.k+3)
= (3.k+1).(3.k+2).3.(k+1) chia hết cho 3
3.TRƯỜNG HỢP 3 : a = 3.k+2
Ta có : a.(a+1).(a+2) = (3.k+2).(3.k3).(3.k+4)
= (3.k+2).(3.k+4).3.(k+1) chia hết cho 3
VẬY TÍCH 3 STNLT THÌ CHIA HẾT CHO 3(2)
Từ (1).(2) --> tích ba STNLT thì chia hết cho 6
Mình không có ý kiến về câu trả lời của bạn Nguyễn Vũ Hải Linh
Nhưng mình có góp ý là bạn nên thêm 1 câu là: tích 3 STNLT chia hết cho 3 và 2 mà 3 và 2 là hai số nguyên tốt cùng nhau nên tích 3 STNLT chia hết cho 6 thì hợp lí hơn
1. TRƯỜNG HỢP 1 : a = 3.k
Ta có : a.(a+1).(a+2) = 3.k.(3.k+1).(3.k+2)chia hết cho 3
2. TRƯỜNG HỢP 2 : a = 3.k+1
Ta có : a.(a+1).(a+2) = (3.k+1).(3.k+2).(3.k+3)
= (3.k+1).(3.k+2).3.(k+1) chia hết cho 3
3.TRƯỜNG HỢP 3 : a = 3.k+2
Ta có : a.(a+1).(a+2) = (3.k+2).(3.k3).(3.k+4)
= (3.k+2).(3.k+4).3.(k+1) chia hết cho 3
VẬY TÍCH 3 STNLT THÌ CHIA HẾT CHO 3 (2) --> tích ba STNLT thì chia hết cho
a) Gọi 2 số chẵn liên tiếp là: 2k; 2k+2
Theo đề bài, ta có: 2k(2k+2) chia hết cho 8
Để 2k(2k+2) chia hết cho 8 thì 2k(2k+2) phải chia hết cho 2 (vì 8 = 2.2.2)
Mà 2k(2k+2) chiia hết cho 2 vì có 1 thừa số 2 trong biểu thức
=> 2k(2k+2) chia hết cho 8
a) Gọi ba số chẵn liên tiếp là: a; a+2; a+4
Ta có: a+a+2+a+4=3a+6
Vì 6 chia hết cho 6=>3a+6 chia hết cho 6
=>tổng của ba số chắn liên tiếp chia hết cho 6
a.gọi 3 số tự nhiên liên tiếp lạ:
a;a+2;a+4(a thuộc n;a=2k)
có
a+a+2+a+4=3a+6=3.2k+6 chia hết cho 6
b.gọi 3 số lẻ liên tiếp là:
a+1,a+3;a+5(a thuộc n;a=2k)
có:a+5+a+1+a+3=3a+9=6k+9
=6k+9=6k+9 ko chi hết cho 6
c.gọi ......là:a,a+2,a+4;a+6;a+8(a thuộc n;a=2k)
a+a+2+a+4+a+6+a+8=5a+20=10k+20=10(k+2) chia hết cho 10=>đpcm
d.tương tự trên có
a+1+a+3+a+5+a+7+a+9=5a+25=10k+25=10k+20+5=10(k+2)+5 chia 10 dư 5=>đpcm
a)Gọi 3 số chẵn liên tiếp là 2k, 2k+2, 2k+4
Ta có: 2k(2k+2)(2k+4)=8k(k+1)(k+2)
Ta lại có: k, k+1,k+2 là 3 số nguyên liên tiếp nên \(k\left(k+1\right)\left(k+2\right)⋮2\)và \(k\left(k+1\right)\left(k+2\right)⋮3\)
vì (2,3)=1 nên \(k\left(k+1\right)\left(k+2\right)⋮2.3=6\)
lúc đó \(8k\left(k+1\right)\left(k+2\right)⋮8.6=48\)
Vậy tích của 3 số chẵn liên tiếp sẽ chia hết cho 48 (ĐPCM)