K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 6 2019

b) Ta có: \(a^2+a+1=a^2+2.\frac{1}{2}a+\frac{1}{4}+\frac{3}{4}\)

\(=\left(a+\frac{1}{2}\right)^2+\frac{3}{4}>0\forall a\)

Vậy \(a^2+a+1>0\left(đpcm\right)\)

20 tháng 6 2019

\(a,\left(x-3\right)\left(x-5\right)+4=x^2-8x+15+4=\left(x-4\right)^2+3>0\)

\(b,a^2+a+1=\left(a+\frac{1}{2}\right)^2+\frac{3}{4}>0\)

\(c,a^2-a+1=\left(a-\frac{1}{2}\right)^2+\frac{3}{4}>0\)

21 tháng 4 2023

+,Ta có :A thuộc E => thay x=2 và y=0 vào E ta đc a^2=4 => a=2 (loại a=-2 vì a<0 )

+, Tương tự thay B vào E => 3b^2=3 =>b=1(loại b=-1 vì b <0)

=> vậy a =2 b =1 

học tốt ! :)))

31 tháng 7 2016

a,\(a^2-6a+10=a^2-6a+9+1=\left(a-3\right)^2+1\)

Mà \(\left(a-3\right)^2\ge0=>\left(a-3\right)^2+1>0\)

\(=>a^2-6a+10>0\)

b, \(a^2+a+1=a^2+2a\frac{1}{2}+\frac{1}{4}+\frac{3}{4}=\left(a+\frac{1}{2}\right)^2+\frac{3}{4}\)

Vì \(\left(a+\frac{1}{2}\right)^2\ge0=>\left(a+\frac{1}{2}\right)+\frac{3}{4}>0\)

\(=>a^2+a+1>0\)

\(\left(x-3\right)\left(x-5\right)+4=x^2-8x+15+4\)

\(=x^2+8x+16+3=\left(x+4\right)^2+3\)

Vì \(\left(x+4\right)^2\ge0=>\left(x+4\right)^2+3>0\)

\(=>\left(x-3\right)\left(x-5\right)+4>0\)

13 tháng 10 2017

chứng minh:4x2-5x+13>0

24 tháng 8 2021

lop 1kho the

26 tháng 8 2021

Lớp 1 kiểu j vậy

1 tháng 8 2020

Xét \(\frac{a^3}{a^2+ab+b^2}-\frac{b^3}{a^2+ab+b^2}=\frac{\left(a-b\right)\left(a^2+ab+b^2\right)}{a^2+ab+b^2}=a-b\)

Tương tự, ta được: \(\frac{b^3}{b^2+bc+c^2}-\frac{c^3}{b^2+bc+c^2}=b-c\)\(\frac{c^3}{c^2+ca+a^2}-\frac{a^3}{c^2+ca+a^2}=c-a\)

Cộng theo vế của 3 đẳng thức trên, ta được: \(\left(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\right)\)\(-\left(\frac{b^3}{a^2+ab+b^2}+\frac{c^3}{b^2+bc+c^2}+\frac{a^3}{c^2+ca+a^2}\right)=0\)

\(\Rightarrow\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\)\(=\frac{b^3}{a^2+ab+b^2}+\frac{c^3}{b^2+bc+c^2}+\frac{a^3}{c^2+ca+a^2}\)

Ta đi chứng minh BĐT phụ sau: \(a^2-ab+b^2\ge\frac{1}{3}\left(a^2+ab+b^2\right)\)(*)

Thật vậy: (*)\(\Leftrightarrow\frac{2}{3}\left(a-b\right)^2\ge0\)*đúng*

\(\Rightarrow2LHS=\Sigma_{cyc}\frac{a^3+b^3}{a^2+ab+b^2}=\Sigma_{cyc}\text{ }\frac{\left(a+b\right)\left(a^2-ab+b^2\right)}{a^2+ab+b^2}\)\(\ge\Sigma_{cyc}\text{ }\frac{\frac{1}{3}\left(a+b\right)\left(a^2+ab+b^2\right)}{a^2+ab+b^2}=\frac{1}{3}\text{​​}\Sigma_{cyc}\left[\left(a+b\right)\right]=\frac{2\left(a+b+c\right)}{3}\)

\(\Rightarrow LHS\ge\frac{a+b+c}{3}=RHS\)(Q.E.D)

Đẳng thức xảy ra khi a = b = c

P/S: Có thể dùng BĐT phụ ở câu 3a để chứng minhxD:

27 tháng 7 2020

1) ta chứng minh được \(\Sigma\frac{a^4}{\left(a+b\right)\left(a^2+b^2\right)}=\Sigma\frac{b^4}{\left(a+b\right)\left(a^2+b^2\right)}\)

\(VT=\frac{1}{2}\Sigma\frac{a^4+b^4}{\left(a+b\right)\left(a^2+b^2\right)}\ge\frac{1}{4}\Sigma\frac{a^2+b^2}{a+b}\ge\frac{1}{8}\Sigma\left(a+b\right)=\frac{a+b+c+d}{4}\)

bài 2 xem có ghi nhầm ko

17 tháng 1 2022

a) \(A=4\sqrt{x^2+1}-2\sqrt{16\left(x^2+1\right)}+5\sqrt{25\left(x^2+1\right).}\)

\(=4\sqrt{x^2+1}-2.4\sqrt{x^2+1}+5.5\sqrt{x^2+1}\)

\(=4\sqrt{x^2+1}-8\sqrt{x^2+1}+25\sqrt{x^2+1}\)

\(=\left(4-8+25\right)\sqrt{x^2+1}\)

\(=21\sqrt{x^2+1}\)

17 tháng 1 2022

b) \(B=\frac{2}{x+y}\sqrt{\frac{3\left(x+y\right)^2}{4}}\)

\(B=\frac{2}{x+y}.\frac{\sqrt{3}\left(x+y\right)}{2}\)

\(B=\frac{\sqrt{3}\left(x+y\right)}{x+y}\)

\(B=\sqrt{3}\)

29 tháng 7 2016

a, Đặt \(\sqrt[4]{a}=x;\sqrt[4]{b}=y.\)Bất đẳng thức ban đầu trở thành: \(\frac{2x^2y^2}{x^2+y^2}\le xy.\)

ta có : \(x^2+y^2\ge2xy\Rightarrow\frac{2x^2y^2}{x^2+y^2}\le\frac{2x^2y^2}{2xy}=xy.\)(đpcm ) 

dấu " = " xẩy ra khi x = y > 0 

vậy bất đăng thức ban đầu đúng. dấu " = " xẩy ra khi a = b >0

20 tháng 4 2023

Theo đề ra ta có hệ : 

 \(\left\{{}\begin{matrix}\dfrac{4}{a^2}=1\\\dfrac{1}{a^2}+\dfrac{\dfrac{3}{4}}{b^2}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2\\\dfrac{\dfrac{3}{4}}{b^2}=\dfrac{3}{4}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=1\end{matrix}\right.\)

Vậy (a,b) = (2,1) 

Y
16 tháng 4 2019

+ \(c^2+1\ge2c\) \(\forall c\)

\(\Rightarrow a^2\left(c^2+1\right)\ge2a^2c\)

Dấu "=" xảy ra \(\Leftrightarrow c=1\)

+ Tương tự ta có :

\(c^2\left(b^2+1\right)\ge2bc^2\). Dấu "=" xảy ra \(\Leftrightarrow b=1\)

\(b^2\left(a^2+1\right)\ge2ab^2\). Dấu "=" xảy ra \(\Leftrightarrow a=1\)

do đó : \(a^2\left(c^2+1\right)+c^2\left(b^2+1\right)+b^2\left(a^2+1\right)\)

\(\ge2\left(a^2c+bc^2+ab^2\right)\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c=1\)

Áp dụng bđt AM-GM cho 3 số dương \(a^2c;bc^2;ab^2\) ta có :

\(a^2c+bc^2+ab^2\ge3\sqrt[3]{a^2c\cdot bc^2\cdot ab^2}=3abc\)

Dấu "=" xảy ra \(\Leftrightarrow a^2c=bc^2=ab^2\Leftrightarrow a=b=c\)

Do đó : \(a^2\left(c^2+1\right)+c^2\left(c^2+1\right)+b^2\left(a^2+1\right)\)

\(\ge2\cdot3abc=6abc\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c=1\)

Nghĩ đơn giản ra

VT = a2 + c2a2 + c2 + b2c2 + b2 + a2b2\(6\sqrt[6]{a^6b^6c^6}\) = 6abc