Cho số thực x thỏa mãn \(x+\frac{2}{x}=5\) Tính giá trị biểu thức F=\(\frac{x^3}{x^6+8}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


x+xy+y+1=9
(x+1)(y+1)=9
áp dụng bđt ab<=(a+b)^2/4
->9<=(x+y+2)^2/4 -> x+y >=4
....

4. (3/4-81)(3^2/5-81)(3^3/6-81)....(3^6/9-81).....(3^2011/2014-81)
mà 3^6/9-81=0 => (3/4-81)(3^2/5-81)....(3^2011/2014-81)=0

\(\frac{x^6-3x^5+3x^4-x^3+2015}{x^6-x^3-3x^2-3x+2015}=\frac{x^6-3x^5+3x^4+3x^3+2015-4x^3}{x^6+3x^3-3x^2-3x+2015-4x^3}=\frac{x^6-3x^3\left(x^2-x-1\right)+2015-4x^3}{6+3x\left(x^2-x-1\right)+2015-4x^3}\)
Theo bài ra: \(x^2-x-1=0\)
\(\frac{x^6-3x^5+3x^4-x^3+2015}{x^6-x^3-3x^2-3x+2015}=\frac{x^6-3x^3\left(x^2-x-1\right)+2015-4x^3}{x^6+3x\left(x^2-x-1\right)+2015-4x^3}=\frac{x^6+2015-4x^3}{x^6+2015-4x^3}=1\)
Vậy:...
Mk nhầm đoạn số 6 bạn sửa lại thành x^6 nhé:
\(\frac{x^6-3x^5+3x^4-x^3+2015}{x^6-x^3-3x^2-3x+2015}=\frac{x^6-3x^5+3x^4+3x^3+2015-4x^3}{x^6+3x^3-3x^2-3x+2015-4x^3}=\frac{x^6-3x^3\left(x^2-x-1\right)+2015-4x^3}{x^6+3x\left(x^2-x-1\right)+2015-4x^3}\)
Theo bài ra: \(x^2-x-1=0\)
\(\Rightarrow\frac{x^6-3x^5+3x^4-x^3+2015}{x^6-x^3-3x^2-3x+2015}=\frac{x^6-3x^3\left(x^2-x-1\right)+2015-4x^3}{x^6+3x\left(x^2-x-1\right)+2015-4x^3}=\frac{x^6+2015-4x^3}{x^6+2015-4x^3}=1\)
Vậy:......

\(T=\frac{3+x}{x}+\frac{6-x}{3-x}=\frac{\left(3+x\right)\left(3-x\right)+x\left(6-x\right)}{x\left(3-x\right)}=\frac{9-x^2+6x-x^2}{x\left(3-x\right)}=\frac{9+6x-2x^2}{x\left(3-x\right)}\)
Đặt T = a
<=> \(\frac{9+6x-2x^2}{x\left(3-x\right)}=a\)
<=> \(9+6x-2x^2=3xa-x^2a\)
<=> \(2x^2-6x-9=x^2a-3xa\)
<=> \(x^2\left(2-a\right)-x\left(6-3a\right)-9=0\)
Phương trình trên có nghiệm
<=> \(\Delta=\left(6-3a\right)^2+4.9.\left(2-a\right)\ge0\)
<=> \(36-36a+9a^2+72-36a\ge0\)
<=> \(9a^2-72a+108\ge0\)
<=> \(\left(a-6\right)\left(a-2\right)\ge0\)
<=> \(\hept{\begin{cases}a\ge6\\a\le2\end{cases}}\)
Vậy \(Min_T=6\) <=> \(x=\frac{3}{2}\)
và \(Max_T=2\Leftrightarrow x\in\varnothing\) (Không tồn tại giá trị lớn nhất của x )

3: \(P=\dfrac{x}{\left(x+y\right)+\left(x+z\right)}+\dfrac{y}{\left(y+z\right)+\left(y+x\right)}+\dfrac{z}{\left(z+x\right)+\left(z+y\right)}\le\dfrac{1}{4}\left(\dfrac{x}{x+y}+\dfrac{x}{x+z}\right)+\dfrac{1}{4}\left(\dfrac{y}{y+z}+\dfrac{y}{y+x}\right)+\dfrac{1}{4}\left(\dfrac{z}{z+x}+\dfrac{z}{z+y}\right)=\dfrac{3}{2}\).
Đẳng thức xảy ra khi x = y = x = \(\dfrac{1}{3}\).

\(Q=2x^2+\frac{6}{x^2}+3y^2+\frac{8}{y^2}\)
\(=\left(2x^2+\frac{2}{x^2}\right)+\left(3y^2+\frac{3}{y^2}\right)+\left(\frac{4}{x^2}+\frac{5}{y^2}\right)\)
Ta có :
\(2x^2+\frac{2}{x^2}\ge2\sqrt{2x^2.\frac{2}{x^2}}=2\sqrt{2.2}=4\) (BĐT AM - GM)
Dấu "=" xảy ra <=> \(2x^2=\frac{2}{x^2}\Rightarrow x=1\)
\(3y^2+\frac{3}{y^2}\ge2\sqrt{3y^2.\frac{3}{y^2}}=2\sqrt{3.3}=6\) (BĐT AM - GM)
Dấu "=" xảy ra <=> \(3y^2=\frac{3}{y^2}\Rightarrow y=1\)
\(\Rightarrow Q=\left(2x^2+\frac{2}{x^2}\right)+\left(3y^2+\frac{3}{y^2}\right)+\left(\frac{4}{x^2}+\frac{5}{y^2}\right)\ge4+6+9=19\)
Dấu "=" xảy ra <=> x = y = 1
Vậỵ GTNN của Q là 19 tại x = y = 1
Ta có:
\(x+\frac{2}{x}=5\)
\(\Leftrightarrow\left(x+\frac{2}{x}\right)^3=125\)
\(\Leftrightarrow x^3+6x+\frac{12}{x}+\frac{8}{x^3}=125\)
\(\Leftrightarrow x^3+6\left(x+\frac{2}{x}\right)+\frac{8}{x^3}=125\)
\(\Leftrightarrow x^3+6.5+\frac{8}{x^3}=125\)
\(\Leftrightarrow x^3+\frac{8}{x^3}=95\)
\(\Leftrightarrow\frac{x^6+8}{x^3}=95\)
\(\Leftrightarrow\frac{x^3}{x^6+8}=\frac{1}{95}\)
Em cảm ơn chị nhiều ạ