Cho đường tròn (O ; R), đường kính AB. M là một điểm nằm giữa O và B. Đường thẳng kẻ qua trung điểm E của AM vuông góc với AB cắt đường tròn (O) ở C và D.
a) Tứ giác ACMD là hình gì? Vì sao?
b) Kẻ tiếp tuyến với đường tròn tại C, tiếp tuyến này cắt tia OA ở I. Chứng minh ID là tiếp tuyến của đường tròn (O).
a) Tứ giác ACMD là hình thoi vì có 2 đường chéo vuông góc với nhau và cắt nhau tại trung điểm mỗi đường.
b) OI là đường trung trực của tam giác cân COD nên góc COI = góc DOI.
=> \(\Delta OCI=\Delta ODI\)(c.g.c) => góc ODI = góc OCI = 90o, do đó ID cắt OD.
Vậy ID là tiếp tuyến của đường tròn (O).
a) Ta có CD vuông góc với AM tại trung điểm (1)
=> OA vuông góc với CD tại trung điểm
=>> AM vuông góc với CD tại trung điểm (2)
Từ (1), (2)=> ACMD là hình thoi