Tính B:
B= 9/2.5 + 39/5.8 + ..... + 2649/50.53
nhờ các ân nhân giúp đỡ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=\frac{2.5-1}{2.5}+\frac{5.8-1}{5.8}+\frac{8.11-1}{8.11}+...+\frac{50.53-1}{50.53}\)
\(B=1-\frac{1}{2.5}+1-\frac{1}{5.8}+1-\frac{1}{8.11}+...+1-\frac{1}{50.53}\)
\(B=17-\frac{1}{3}\left(\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+...+\frac{3}{50.53}\right)\)
\(B=17-\frac{1}{3}\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{50}-\frac{1}{53}\right)\)
\(B=17-\frac{1}{3}\left(\frac{1}{2}-\frac{1}{53}\right)=\frac{1785}{106}\)
\(A=\frac{5}{2.5}+\frac{5}{5.8}+\frac{5}{8.11}+...+\frac{5}{98.101}\)
\(=\frac{5}{2}-\frac{5}{5}+\frac{5}{5}-\frac{5}{8}+....+\frac{5}{98}-\frac{5}{101}\)
\(=\frac{5}{2}-\frac{5}{101}=\frac{495}{202}\)
\(\frac{5}{2\times5}+\frac{5}{5\times8}+\frac{5}{8\times11}+...+\frac{5}{98\times101}\)
\(=\frac{5}{3}\times\left(\frac{3}{2\times5}+\frac{3}{5\times8}+\frac{3}{8\times11}+...+\frac{3}{98\times101}\right)\)
\(=\frac{5}{3}\times\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{98}-\frac{1}{101}\right)\)
\(=\frac{5}{3}\times\left(\frac{1}{2}-\frac{1}{101}\right)\)
\(=\frac{5}{3}\times\frac{99}{202}=\frac{165}{202}\)
=> 3B = 3.( 1/2.5 + 1/5.8 + 1/8.11 + ........... + 1/122.125)
= 3/2.5 + 3/5.8 + 3/ 8.11 + ......+ 3/122.125
Ta có: 3/ 2.5 = 1/2 - 1/5
3/5.8 = 1/5 -1/8
3/ 8.11 = 1/8 -1/11
..........................
3/122 . 125 = 3/122 - 3/125
=> 3B= 1/2 - 15/5 + 1/5 -1/8 +1/8 - 1/11 +........+1/122 - 1/125
= 1/2 - 1/125 = 125/250 - 2/250= 123/250
=> B= 3B : 3 = 123/250 :3 = 123/250 . 1/3 = 41/250
=> 2C = 2.(1/9.11 + 1/11.13 +....+ 1/97 .99)
= 2/9.11 + 2/11 .13 +.....+ 2/ 97.99
Ta có: 2/9.11 = 1/9 - 1/11
2/11.13 = 2/11 -2/ 13
...............................
2/97.99 = 1/97 - 1/99
=> 2B = 1/9 - 1/11 + 1/11 - 1/13 + ....+ 1/97 - 1/99
= 1/9 -1/99 = 11/99 - 1/99 =10/99
=> B= 2B : B = 10/99 :2 =10/99 . 1/2 = 5/99
Vậy B = 5/99
1/2.5 + 1/5.8 + ... + 1/49.52
= 1/3 . ( 3/2.5 + 3/5.8 + ... + 3/49.52 )
= 1/3 . ( 1/2 - 1/5 + 1/5 - 1/8 + ... + 1/49 - 1/52 )
= 1/3 . ( 1/2 - 1/52 )
= 1/3 . 25/52
= 25/156
\(\frac{1}{2.5}+\frac{1}{5.8}+....+\frac{1}{49.52}\)
\(=\frac{1}{3}.\left(\frac{3}{2.5}+\frac{3}{5.8}+...+\frac{3}{49.52}\right)\)
\(=\frac{1}{3}.\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{49}-\frac{1}{50}\right)\)
\(=\frac{1}{3}.\left(\frac{1}{2}-\frac{1}{52}\right)=\frac{1}{3}.\left(\frac{26}{52}-\frac{1}{52}\right)=\frac{1}{3}.\frac{25}{52}=\frac{25}{156}\)
C = 6/2.5 + 6/5.8 + 6/8.11 +...+ 6/29.32
C = 2.(3/2.5 + 3/5.8 + 3/8.11 + ... + 3/29.32)
C = 2.(1/2 - 1/5 + 1/5 - 1/8 + 1/8 - 1/11 + ... + 1/29 - 1/32)
C = 2.(1/2 - 1/32)
C = 2.15/32
C = 15/16
Kham khảo tại link:
Câu hỏi của Lê Thúy Hằng - Toán lớp 6 | Học trực tuyến
https://h.vn/hoi-dap/question/821353.html
\(B=1-\frac{1}{2.5}+1-\frac{1}{5.8}+...+1-\frac{1}{50.53}\)
\(B=17-\frac{1}{3}\left(\frac{3}{2.5}+\frac{3}{5.8}+....+\frac{3}{50.53}\right)\)
\(B=17-\frac{1}{3}\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-.....-\frac{1}{53}\right)\)
\(B=17-\frac{1}{3}\left(\frac{1}{2}-\frac{1}{53}\right)=17-\frac{1}{3}.\frac{51}{106}=17-\frac{17}{106}=17\left(1-\frac{1}{106}\right)=17.\frac{105}{106}=\frac{1785}{106}\)