3/5.8 + 3/8.11 + 3/11.14 + ...... + 3/105.108
Chú thích*:
/=phần
.=nhân
giải hộ mình với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
=1/2-1/5+1/5-1/8+1/8-1/11+1/11-1/14
=1/2-1/14
=7/14-1/14=6/14=3/7
3x/2.5 + 3x/5.8 + 3x/8.11 + 3x/11.14 = 1/21
=> x . ( 3/2.5 + 3/5.8 + 3/8.11 + 3/11.14 ) = 1/21
=> x . ( 1/2.5 + 1/5.8 + 1/8.11 + 1/11.14 ) = 1/21
x . ( 1/2 - 1/5 + 1/5 - 1/8 + 1/8 - 1/11 + 1/11 - 1/14 ) = 1/21
x . ( 1/2 - 1/14 ) = 1/21
x . 3/7 = 1/21
x = 1/21 : 3/7
=> x = 1/9
\(\frac{3x}{2\cdot5}+\frac{3x}{5\cdot8}+\frac{3x}{8\cdot11}+\frac{3x}{11\cdot14}=\frac{1}{21}\)
<=> \(x\left(\frac{3}{2\cdot5}+\frac{3}{5\cdot8}+\frac{3}{8\cdot11}+\frac{3}{11\cdot14}\right)=\frac{1}{21}\)
<=> \(x\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}\right)=\frac{1}{21}\)
<=> \(x\left(\frac{1}{2}-\frac{1}{14}\right)=\frac{1}{21}\)
<=> \(x\cdot\frac{3}{7}=\frac{1}{21}\)
<=> \(x=\frac{1}{9}\)
x.\(\left(\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+\frac{3}{11.14}+\frac{3}{14.17}\right)=-1\frac{3}{5}\)
x.\(\left(\frac{5-2}{2.5}+\frac{8-5}{5.8}+\frac{11-8}{8.11}+\frac{14-11}{11.14}+\frac{17-14}{14.17}\right)=\frac{-8}{5}\)
x.\(\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+\frac{1}{14}-\frac{1}{17}\right)=\frac{-8}{5}\)
x.\(\left(\frac{1}{2}-\frac{1}{17}\right)=\frac{-8}{5}\)
x.\(\left(\frac{17}{34}-\frac{2}{34}\right)=\frac{-8}{5}\)
x.\(\frac{15}{34}=\frac{-8}{5}\)
x\(=\frac{-8}{5}:\frac{15}{34}\)
x\(=\frac{-8}{5}.\frac{34}{15}\)
x\(=\frac{-272}{75}\)
Vậy x\(=\frac{-272}{75}\)
\(\frac{3}{2.5}\)+\(\frac{3}{5.8}\)+\(\frac{3}{8.11}\)+\(\frac{3}{11.14}\)+\(\frac{3}{14.17}\)
=\(\frac{1}{2}\)-\(\frac{1}{5}\)+\(\frac{1}{5}\)-\(\frac{1}{8}\)+......+\(\frac{1}{14}\)-\(\frac{1}{17}\)
=\(\frac{1}{2}\)-\(\frac{1}{17}\)
=\(\frac{15}{34}\)
\(\dfrac{3}{2\cdot5}+\dfrac{3}{5\cdot8}+\dfrac{3}{8\cdot11}+\dfrac{3}{11\cdot14}+\dfrac{3}{14\cdot17}\)
= \(\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{14}+\dfrac{1}{14}-\dfrac{1}{17}\)
\(=\dfrac{1}{2}-\dfrac{1}{17}\)
\(=\dfrac{15}{34}\)
Vì \(\dfrac{15}{34}< \dfrac{1}{2}=>\dfrac{3}{2\cdot5}+\dfrac{3}{5\cdot8}+\dfrac{3}{8\cdot11}+\dfrac{3}{11\cdot14}+\dfrac{3}{14\cdot27}< \dfrac{1}{2}\)
\(B=\frac{3}{5.8}+\frac{3}{8.11}+...+\frac{3}{2018.2021}\)
\(B=\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{2018}-\frac{1}{2021}\)
\(B=\frac{1}{5}-\frac{1}{2021}\)
\(B=\frac{2016}{10105}\)
\(\frac{3}{5.8}+\frac{3}{8.11}+\frac{3}{11.14}+...+\frac{3}{105.108}\)
\(=\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+...+\frac{1}{105}-\frac{1}{108}\)
\(=\frac{1}{5}-\frac{1}{108}\)
\(=\frac{108}{540}-\frac{5}{540}=\frac{103}{540}\)
Ta có:
\(\frac{3}{5.8}+\frac{3}{8.11}+\frac{3}{11.14}+...+\frac{3}{105.108}\)
= \(\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+...+\frac{1}{105}-\frac{1}{108}\)
= \(\frac{1}{5}-\frac{1}{108}\)
= \(\frac{103}{540}\)