K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

tự trả lời :

2x + 4x2 >8

2x(1 + 2x) >8

TH1 : 2x > 8

x > 4

TH2 : 1 + 2x >8

2x > 7

x > \(\frac{7}{2}\)

17 tháng 6 2019

\(x+x^2< 5\)

\(\Leftrightarrow x^2+x< 5\)

\(\Leftrightarrow x(x+1)< 5\)

\(\Leftrightarrow\orbr{\begin{cases}x< 5\\x+1< 5\end{cases}}\Leftrightarrow\orbr{\begin{cases}x< 5\\x< 4\end{cases}}\)

Bạn 🕎NG Hùng Dũng🔯( Team Boss ) biết làm rồi mà sao ko làm bài cuối

a:=>6x^2-8x+4x-6x^2<-4

=>-4x<-4

=>x>1

b: =>6x+8x^2-8x^2-24x>5

=>-18x>5

=>x<-5/18

12 tháng 4 2023

a)\(6x^2-8x+2x\left(2-3x\right)< -4\)

\(\Leftrightarrow6x^2-8x+4x-6x^2< -4\)

\(\Leftrightarrow-4x< -4\)

\(\Leftrightarrow-4x.\dfrac{-1}{4}>-4\cdot\dfrac{-1}{4}\)

\(\Leftrightarrow x>1\)

Vậy bất phương trình có nghiệm là \(S=\left\{xIx>1\right\}\)

b)\(2\left(3x+4x^2\right)-8x\left(x+3\right)>5\)

\(\Leftrightarrow6x+8x^2-8x^2-24x>5\)

\(\Leftrightarrow-18x>5\)

\(\Leftrightarrow-18x\cdot\dfrac{-1}{18}< 5\cdot\dfrac{-1}{18}\)

\(\Leftrightarrow x< -\dfrac{5}{18}\)

Vậy bất phương trình có nghiệm là \(S=\left\{xIx< -\dfrac{5}{18}\right\}\)

13 tháng 4 2023

cái này là tập nghiệm chứ bạn

14 tháng 8 2019

27 tháng 9 2018

Ta có bất phương trình đã cho tương đương với

4 x 2 + 3 . 3 x + x . 3 x - 2 x 2 . 3 x - 2 x - 6 < 0

⇔ 3 + x - 2 x 2 3 x  − 2(x − 2 x 2  + 3) < 0

⇔(−2 x 2  + x + 3)( 3 x  − 2) < 0

Giải sách bài tập Toán 12 | Giải sbt Toán 12 

Giải sách bài tập Toán 12 | Giải sbt Toán 12 

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Vậy nghiệm của bất phương trình là x > 3/2 hoặc

Giải sách bài tập Toán 12 | Giải sbt Toán 12

22 tháng 10 2018

1: \(\Leftrightarrow\left(x-3\right)\left(x+3\right)-\left(x-3\right)\left(5x+2\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(-4x+1\right)=0\)

hay \(x\in\left\{3;\dfrac{1}{4}\right\}\)

2: \(\Leftrightarrow\left(x-1\right)\left(x^2+x+1\right)-\left(x-1\right)\left(x^2-2x+16\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^2+x+1-x^2+2x-16\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(3x-15\right)=0\)

hay \(x\in\left\{1;5\right\}\)

3: \(\Leftrightarrow\left(x-1\right)\left(4x^2-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(2x-1\right)\left(2x+1\right)=0\)

hay \(x\in\left\{1;\dfrac{1}{2};-\dfrac{1}{2}\right\}\)

4: \(\Leftrightarrow x^2\left(x+4\right)-9\left(x+4\right)=0\)

\(\Leftrightarrow\left(x+4\right)\left(x-3\right)\left(x+3\right)=0\)

hay \(x\in\left\{-4;3;-3\right\}\)

5: \(\Leftrightarrow\left[{}\begin{matrix}3x+5=x-1\\3x+5=1-x\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=-6\\4x=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=-1\end{matrix}\right.\)

6: \(\Leftrightarrow\left(6x+3\right)^2-\left(2x-10\right)^2=0\)

\(\Leftrightarrow\left(6x+3-2x+10\right)\left(6x+3+2x-10\right)=0\)

\(\Leftrightarrow\left(4x+13\right)\left(8x-7\right)=0\)

hay \(x\in\left\{-\dfrac{13}{4};\dfrac{7}{8}\right\}\)

14 tháng 2 2022

1.

\(\Leftrightarrow\left(x-3\right)\left(x+3\right)=\left(x-3\right)\left(5x-2\right)\)

\(\Leftrightarrow x+3=5x-2\)

\(\Leftrightarrow4x=5\Leftrightarrow x=\dfrac{5}{4}\)

2.

\(\Leftrightarrow\left(x-1\right)\left(x^2+x+1\right)=\left(x-1\right)\left(x^2-2x+16\right)\)

\(\Leftrightarrow x^2+x+1=x^2-2x+16\)

\(\Leftrightarrow3x=15\Leftrightarrow x=5\)

3.

\(\Leftrightarrow4x^2\left(x-1\right)-\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(4x^2-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1}{2};x=-\dfrac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow2x^3-2x+x^2-1-4x^2+2x+2=0\)

\(\Leftrightarrow2x^3-3x^2+1=0\)

\(\Leftrightarrow2x^3-2x^2-x^2+1=0\)

\(\Leftrightarrow2x^2\left(x-1\right)-\left(x-1\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(2x^2-x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(2x^2-2x+x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)^2\left(2x+1\right)=0\)

=>x=1 hoặc x=-1/2

28 tháng 2 2022

\(\left(2x+1\right)\left(x^2-1\right)=4x^2-2x-2\\ \Leftrightarrow\left(2x+1\right)\left(x-1\right)\left(x+1\right)=4x^2-4x+2x-2\\ \Leftrightarrow\left(2x+1\right)\left(x-1\right)\left(x+1\right)=4x\left(x-1\right)+2\left(x-1\right)\\ \Leftrightarrow\left(2x+1\right)\left(x-1\right)\left(x+1\right)=\left(4x+2\right)\left(x-1\right)\\ \Leftrightarrow\left(2x+1\right)\left(x-1\right)\left(x+1\right)=2\left(2x+1\right)\left(x-1\right)\\ \Leftrightarrow\left(2x+1\right)\left(x-1\right)\left(x+1\right)-2\left(2x+1\right)\left(x-1\right)=0\\ \Leftrightarrow\left(2x+1\right)\left(x-1\right)\left(x+1-2\right)=0\\ \Leftrightarrow\left(2x+1\right)\left(x-1\right)^2=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{2}\\x=1\end{matrix}\right.\)