cho tam giác abc cân ở a. trên cạnh ab lấy điểm m, trên tia đối của ca lấy điểm n sao cho bm = cn. gọi k là trung điểm mn. chứng minh ba điểm b, k , c thẳng hàng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cài này bạn tự vẽ hình nha , mik ko vẽ được trên bàn phím .
Xét tam giác BMK và tam giác CNK có :
BM = CN ( gt ) .
Góc BKM = góc CKN .( Hai góc đối đỉnh ) .
MK = NK ( K là trung điểm MN ) .
Suy ra tam giác BMK = tam giác CNK .( c . g .c ) .
Suy ra BK = CK .
Suy ra K là trung điểm của BC .
Suy ra B , K , C thẳng hàng .
Mik viết nhầm toán thành văn. Ok! Nếu bạn biết hãy giải giúp mik. Đừng hạch họe lung tung.
Xét tam giác BMK và tam giác CNK có:
BM=CN (gt)
Góc BKM=góc CKN (hai góc đối đỉnh)
MK=NK (K là trung điểm MN)
=> tam giác BMK=tam giác CNK (c.g.c)
=> BK=CK
=> K là trung điểm BC
=> B,K,C thẳng hàng.
Bài mình vừa sưu tập được của bạn lanphung https://hoidap247.com/thong-tin-ca-nhan/82620
(tu ve hinh nhe)
qua M ke MH//AC, h thuoc BC
BC cat MN o K'
=>gocHMK =goc CNK' (1)
lai co gocB=gocC, gocMHB=gocC do dong vi=>gocMHB=gocB suy ra tam giac MBH can tai m
suy ra MH=MB=CN
ma gocMHK'=gocNCK'
ket hop voi 1 suy ra tam giac K'MH=tam giacK'NC(g.c.g)
suy ra K' la trung diem cua MN
suy rea K' trung K
suy ra B,C,K thang hang
Xét tam giác BMK và tam giác CNK có:
BM=CN (gt)
Góc BKM=góc CKN (hai góc đối đỉnh)
MK=NK (K là trung điểm MN)
=> tam giác BMK=tam giác CNK (c.g.c)
=> BK=CK
=> K là trung điểm BC
=> B,K,C thẳng hàng.
#)Giải :
( Hình tự vẽ nha :P )
Xét \(\Delta BMK\)và \(\Delta CNK\)có :
BM = CN ( gt )
\(\widehat{BKM}=\widehat{CKN}\)( hai gọc đối đỉnh )
MK = NK ( K là trung điểm của MN )
=> \(\Delta BMK=\Delta CNK\)( c.g.c )
=> BK = CK ( hai cạnh tương ứng bằng nhau )
=> K là trung điểm của BC
=> B,K,C thẳng hàng
#~Will~be~Pens~#
Xét tam giác BMK và tam giác CNK có:
BM=CN (gt)
Góc BKM = góc CKN (hai góc đối đỉnh)
MK=NK (K là trung điểm MN)
=> tam giác BMK=tam giác CNK (c.g.c)
=> BK=CK
=> K là trung điểm BC
=> B,K,C thẳng hàng.
XÉT TAM GIÁC