K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 6 2019

Đặt \(A=\frac{1}{2}+\frac{2}{2^2}+\frac{3}{2^3}+\frac{4}{2^4}+...+\frac{100}{2^{100}}\)

\(\Leftrightarrow2A=1+\frac{2}{2}+\frac{3}{2^2}+\frac{4}{2^3}+...+\frac{100}{2^{99}}\)

\(\Rightarrow2A-A=A=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{99}}-\frac{100}{2^{100}}\)

\(\Leftrightarrow2A=2+1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{98}}-\frac{100}{2^{99}}\)

\(\Rightarrow2A-A=2-\frac{100}{2^{99}}+\frac{100}{2^{100}}< 2-\frac{100}{2^{100}}+\frac{100}{2^{100}}=2\)

\(\Rightarrow A< 2\Leftrightarrow\frac{1}{2}+\frac{2}{2^2}+\frac{3}{2^3}+\frac{4}{2^4}+...+\frac{100}{2^{100}}< 2\left(đpcm\right).\)

15 tháng 6 2019

cảm ơn nhé

12 tháng 3 2017

Ai giúp mình với mình đang cần gấp

2 tháng 3 2017

??????????????????????????????????????????????

2 tháng 3 2017

Lần đầu post, mình quên mất chưa nêu câu hỏi. Nhờ các bạn chứng minh dùm 3 câu trên với, cám ơn nhiều ah!

24 tháng 3 2017

A=1/1^2+ 1/2^2+ 1/3^2+...+ 1/99^2+ 1/100^2

A=1+ 1/2^2+ 1/3^2+...+ 1/99^2+ 1/100^2

A<1+(1/2^2+1/2.3+1/3/4+...+1/98.99+1/99.100) (giữ nguyên phân số 1/2^2)

A<1+ (1/4+1/2-1/3+1/3-1/4+...+1/99-1/99+1/99-1/100)

A<1+ (1/4+1/2-1/100)

Mà 1/4+1/2-1/100 <1/4+1/2=3/4

=>A<1+3/4=7/4

24 tháng 3 2017

x = 3- 1 - 1

x = 1

Vậy x =1