K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 11 2024

bạn ơi đây ko phải lớp 1

 

26 tháng 9 2021

Mode 5 3 trên máy tính Casio fx-570 :

a) a=1,b=-2,c=-4

b) a=1,b=-2,c=7 

 

 

 

27 tháng 3 2021

x=1

27 tháng 3 2021

x=1

24 tháng 3 2021

Giả sử \(^{2^x+1=a^2}\), ta có:

<=> \(2^x=a^2-1\)

<=>\(2^x=a^2-a+a-1\)

<=>\(2^x=a\left(a-1\right)+\left(a-1\right)\)

<=>\(2^x=\left(a-1\right)\left(a+1\right)\)

=>

  • \(a-1=2^y\)<=>\(a=2^y+1\)
  • \(a+1=2^z\)<=>\(a=2^z-1\)

(x=y+z)

=> \(2^y+1=2^z-1\)

<=>\(2^z-2^y=2\)

<=>\(2\left(2^{z-1}-2^{y-1}\right)=2\)

<=>\(2^{z-1}-2^{y-1}=1\)(chia cả 2 vế cho 2) (*)

Vì hiệu hai lũy thừa cơ số 2 và mũ khác 0 luôn là một số chia hết cho 2 nên biểu thức (*) xảy ra khi và chỉ khi:

  • \(2^{y-1}=1\)<=> y-1 = 0 <=> y=1
  • \(2^{z-1}=2\)<=> z-1 = 1 <=> z=2

=> x = y+z = 1+2 = 3.