cho a/b < c/d chứng minh a/b < a+c/b+d <c/d
áp dụng tìm 3 số hữu tỉ xen giữa -1/2 và -1/3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)a<b
=>a+c<b+c(1)
c<d
=>b+c<b+d(2)
Từ 1 và 2 =>a+c<b+d
b)a<b
=>ac<bc(1)
c<d
=>bc<bd(2)
Từ 1 và 2 =>ac<bd
a) a<b \(\Rightarrow\) a+c < b+c (1)
c<d\(\Rightarrow\) c+b < d+b (2)
Từ 1 và 2 \(\Rightarrow\)a+c < b+d (dpcm)
b) a<b \(\Rightarrow\) ac < bc ( vì c dương) (1)
c < d\(\Rightarrow\) bc < bd (vì b dương) (2)
Từ 1 và 2 \(\Rightarrow\) ac < bd (đpcm)
Do \(\frac{a}{b}< \frac{c}{d}\)
=> \(a.d< b.c\)
=> \(a.d+a.b< b.c+a.b\)
=> \(a.\left(b+d\right)< b.\left(a+c\right)\)
=> \(\frac{a}{b}< \frac{a+c}{b+d}\left(1\right)\)
Do \(\frac{a}{b}< \frac{c}{d}\)
=> \(a.d< b.c\)
=> \(a.d+c.d< b.c+c.d\)
=> \(d.\left(a+c\right)< c.\left(b+d\right)\)
=> \(\frac{a+c}{b+d}< \frac{c}{d}\left(2\right)\)
Từ (1) và (2) => \(\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\left(đpcm\right)\)
a) Ta có: a<b
nên a+c<b+c(1)
Ta có: c<d
nên c+b<b+d(2)
Từ (1) và (2) suy ra a+c<b+c<b+d
hay a+c<b+d
b) Ta có: a<b
nên ac<bc(3)
Ta có: c<d
nên bc<bd(4)
Từ (3) và (4) suy ra ac<bc<bd
hay ac<bd(đpcm)
Từ \(\frac{a}{b}< \frac{c}{d}\Rightarrow ad< bc\)
Ta có:\(\frac{a}{b}< \frac{a+c}{b+d}\)
\(\Leftrightarrow a\left(b+d\right)< b\left(a+c\right)\)
\(\Leftrightarrow ab+ad< ba+bc\)
\(\Leftrightarrow ad< bc\left(true\right)\left(1\right)\)
Chứng minh hoàn toàn tương tự ta có:
\(\frac{a+c}{b+d}< \frac{c}{d}\left(2\right)\)
Từ (1);(2) suy ra điều phải chứng minh.
Câu hỏi của Thảo Hiền Nguyễn - Toán lớp 7 - Học toán với Online Math
Bạn tham khảo nhé :>