Giải pt
\(\left(x-2\right)^6+\left(x-4\right)^6=64\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.
\(\left\{{}\begin{matrix}x^4+y^4=34\\y=2-x\end{matrix}\right.\)
\(\Rightarrow x^4+\left(x-2\right)^4=34\)
Đặt \(x-1=t\)
\(\Rightarrow\left(t+1\right)^4+\left(t-1\right)^4=34\)
\(\Leftrightarrow t^4+6t^2-16=0\Rightarrow\left[{}\begin{matrix}t^2=2\\t^2=-8\left(loại\right)\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}t=\sqrt{2}\Rightarrow x=\sqrt{2}+1\Rightarrow y=1-\sqrt{2}\\t=-\sqrt{2}\Rightarrow x=1-\sqrt{2}\Rightarrow y=1+\sqrt{2}\end{matrix}\right.\)
b.
\(\left\{{}\begin{matrix}xy^2-x^2y+6x-y^2-y-6=0\\x^2y-xy^2+6y-x^2-x-6=0\end{matrix}\right.\) (1)
Lần lượt cộng 2 vế và trừ 2 vế ta được:
\(\left\{{}\begin{matrix}-x^2-y^2+5x+5y-12=0\\2xy\left(y-x\right)+7\left(x-y\right)+\left(x-y\right)\left(x+y\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+y^2-5\left(x+y\right)+12=0\\\left(y-x\right)\left(2xy-x-y-7\right)=0\end{matrix}\right.\)
Th1: \(\left\{{}\begin{matrix}x=y\\x^2+y^2-5\left(x+y\right)+12=0\end{matrix}\right.\)
\(\Rightarrow2x^2-10x+12=0\Rightarrow...\)
TH2: \(\left\{{}\begin{matrix}2xy-\left(x+y\right)-7=0\\x^2+y^2-5\left(x+y\right)+12=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2xy-\left(x+y\right)-7=0\\\left(x+y\right)^2-2xy-5\left(x+y\right)+12=0\end{matrix}\right.\)
Đặt \(\left\{{}\begin{matrix}x+y=u\\xy=v\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}2v-u-7=0\\u^2-2v-5u+12=0\end{matrix}\right.\)
\(\Rightarrow u^2-6u+5=0\)
\(\Leftrightarrow...\)
Lần sau đừng tự tiện xếp vào phần bất pt bạn nhé :(
Ta có : \(4\left(x+5\right)\left(x+6\right)\left(x+10\right)\left(x+12\right)=3x^2\)
\(\Leftrightarrow4\left(x+5\right)\left(x+12\right)\left(x+6\right)\left(x+10\right)=3x^2\)
\(\Leftrightarrow4\left(x^2+17x+60\right)\left(x^2+16x+60\right)=3x^2\)(1)
Đặt \(x^2+16x+60=a\)
Pt (1) \(\Leftrightarrow4\left(a+x\right)a=3x^2\)
\(\Leftrightarrow4\left(a^2+ax\right)=3x^2\)
\(\Leftrightarrow4a^2+4ax=3x^2\)
\(\Leftrightarrow4a^2+4ax+x^2=4x^2\)
\(\Leftrightarrow\left(2a+x\right)^2=4x^2\)
\(\Leftrightarrow\orbr{\begin{cases}2a+x=2x\\2a+x=-2x\end{cases}}\)
*Nếu \(2a+x=2x\)
\(\Leftrightarrow2a=x\)
\(\Leftrightarrow x^2+16x+60=x\)
\(\Leftrightarrow x^2+15x+60=0\)
\(\Leftrightarrow x^2+2.\frac{15}{2}.x+\frac{225}{4}+\frac{15}{4}=0\)
\(\Leftrightarrow\left(x+\frac{15}{2}\right)^2+\frac{15}{4}=0\)
Pt vô nghiệm
*Nếu \(2a+x=-2x\)
\(\Leftrightarrow2a+3x=0\)
\(\Leftrightarrow2\left(x^2-16x+60\right)+3x=0\)
\(\Leftrightarrow2x^2-32x+120+3x=0\)
\(\Leftrightarrow2x^2-29x+120=0\)
\(\Leftrightarrow x^2-\frac{29}{2}x+60=0\)
\(\Leftrightarrow x^2-2.\frac{29}{4}.x+\frac{841}{16}+\frac{119}{16}=0\)
\(\Leftrightarrow\left(x-\frac{29}{4}\right)^2+\frac{119}{16}=0\)
Pt vô nghiệm
Vậy pt vô nghiệm
\(\left(x+4\right)\left(x+6\right)\left(x-2\right)\left(x-12\right)=25x^2\)
\(\Leftrightarrow\left(x+3\right)\left(x+8\right)\left(x^2-15x+24\right)=0\)
\(x^4-8x^3+21x^2-24x+9=0\)
\(\Leftrightarrow\left(x^2-3x+3\right)\left(x^2-5x+3\right)=0\)
\(\Leftrightarrow\left(x-\frac{5+\sqrt{13}}{2}\right)\left(x-\frac{5-\sqrt{13}}{2}\right)=0\) (vì \(x^2-3x+3=\left(x-\frac{3}{2}\right)^2+0,75>0\))
\(\Rightarrow\orbr{\begin{cases}x=\frac{5+\sqrt{13}}{2}\\x=\frac{5-\sqrt{13}}{2}\end{cases}}\)
Đặt x-4=t
x-2=t+2
x-6 = t - 2
pt <=> (t+2)4 + (t-2)4 = 82
<=> (t2+4+4t)2 + (t2+4 -4t)2 =82
<=> (t2+4)2 +8t(t2+1)+16t2 + (t2+4)2 - 8t(t2+1)+16t2 =82
<=> (t2+4)2 + 16t2 =41
<=> t4 + 24t2 +16 -41 = 0 <=> \(\left[{}\begin{matrix}t^2=1\\t^2=-25\left(loai\right)\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}t=1\\t=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=5\end{matrix}\right.\)
\(\Leftrightarrow1+3x+3x^2+x^3+1-3x+3x^2-x^3=6\left(x+1\right)^2\)
\(\Leftrightarrow6x^2+2=6\left(x^2+2x+1\right)\)
\(\Leftrightarrow6x^2+2=6x^2+12x+6\)
\(\Leftrightarrow12x=-4\)
\(\Leftrightarrow x=-\dfrac{1}{3}\)
1+3x+3x2+1+1-3x2+3x-1=6(x2+2x+1)
6x2 +2 = 6x2+12x+6
-12x - 4 = 0
=> x = 3
Đặt t = x - 3, pt trở thành :
(t + 1)6 + (t - 1)6 = 64
Khai triển và rút gọn, ta được :
2t6 + 30t4 + 30t2 + 2 = 64 => 2(t - 1)(t + 1)(t4 + 16t2 + 31) = 0
=> \(t=\pm1\) (do t4 + 16t2 + 31 ≠ 0)
Vậy...