a) \(\sqrt{x^2-6x+9}=x-3\)
b) \(\sqrt{x^2-6x+9}+x=3\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) `sqrt(x^2-6x _9) = 4-x`
`<=> sqrt[(x-3)^2] =4-x`
`<=> |x-3| =4-x ( đk :x<=4)`
`<=> |x-3| = |4-x|`
`<=> [(x-3 =4-x),(x-3 = x-4):}`
`<=>[(x = 7/2(t//m)),(0=-1(vl)):}`
Vậy `S = {7/2}`
b) `sqrt(x^2 -9) + sqrt(x^2 -6x +9) =0(đk : x>=3(hoặc) x<=-3)`
`<=>sqrt(x^2 -9) =- sqrt(x^2 -6x +9) `
`<=>(sqrt(x^2 -9))^2 =(- sqrt(x^2 -6x +9))^2`
`<=> x^2 -9 = x^2 -6x +9`
`<=> 6x = 9+9 =18`
`<=> x=3(t//m)`
Vậy `S={3}`
c) `sqrt(x^2 -2x+1) + sqrt(x^2-4x+4) =3`
`<=> sqrt[(x-1)^2] +sqrt[(x-2)^2] =3`
`<=> |x-1| +|x-2| =3`
xét `x<1 =>{(|x-1| =1-x ),(|x-2|=2-x):}`
`=> 1-x +2-x =3`
`=> x = 0(t//m)`
xét `1<=x<2 => {(|x-1|=x-1),(|x-2|= 2-x):}`
`=> x-1 +2-x =3`
`=>1=3 (vl)`
xét `x>=2 => {(|x-1| =x-1),(|x-2|=x-2):}`
`=> x-1+x-2 =3`
`=> x=3(t//m)`
Vậy `S = {0;3}`
\(A=\sqrt{x^2}-\sqrt{x^2-4x+4}\)
\(\Leftrightarrow A=|x|-\sqrt{\left(x-2\right)^2}\)
\(\Leftrightarrow A=x-|x-2|=x-x+2=2\)
A = \(\sqrt{x^2}-\sqrt{x^2-4x+4}=\sqrt{x^2}-\sqrt{\left(x-2\right)^2}=\left|x\right|-\left|x-2\right|=x-x+2=2\)(vì \(x\ge2\))
B = \(\sqrt{x^2-6x+9}-\sqrt{x^2+6x+9}=\sqrt{\left(x-3\right)^2}-\sqrt{\left(x+3\right)^2}=\left|x-3\right|-\left|x+3\right|=3-x+x+3=6\)(vì x < 3)
Lời giải:
a. Đề thiếu
b. PT $\Leftrightarrow \sqrt{(x-1)^2}+\sqrt{(x-2)^2}=3$
$\Leftrightarrow |x-1|+|x-2|=3$
Nếu $x\geq 2$ thì pt trở thành:
$x-1+x-2=3$
$\Leftrightarrow 2x-3=3$
$\Leftrightarrow x=3$ (tm)
Nếu $1\leq x< 2$ thì:
$x-1+2-x=3\Leftrightarrow 1=3$ (vô lý)
Nếu $x< 1$ thì:
$1-x+2-x=3$
$\Leftrightarrow x=0$ (tm)
a)\(\sqrt{x^2-9}+\sqrt{x^2-6x+9}=0\)
\(\Rightarrow\sqrt{\left(x-3\right)\left(x+3\right)}+\sqrt{\left(x-3\right)^2}=0\)
\(\Rightarrow\sqrt{\left(x-3\right)\left(x+3\right)}+x-3=0\)
Đặt \(x-3=t\) pt thành
\(\sqrt{t\left(t-6\right)}-t=0\)
\(\Leftrightarrow t^2-6t=t^2\)
\(\Leftrightarrow t=0\)\(\Rightarrow x-3=0\Leftrightarrow x=3\)
b)\(\sqrt{x^2-4}-x^2+4=0\)
\(\Leftrightarrow\sqrt{x^2-4}=x^2-4\)
Đặt \(\sqrt{x^2-4}=t\) pt thành
\(t=t^2\Rightarrow t\left(1-t\right)=0\)
\(\Rightarrow\left[\begin{array}{nghiempt}t=1\\t=0\end{array}\right.\).
Với \(t=0\Rightarrow\sqrt{x^2-4}=0\Rightarrow x=\pm2\)
Với \(t=1\Rightarrow\sqrt{x^2-4}=1\)\(\Rightarrow x=\pm\sqrt{5}\)
a)√x2−9 - 3√x−3 =0
<=> (√x-3)(√x+3)-3√x-3=0
<=> (√x-3)(√x+3-3)=0
<=> (√x-3)√x=0
<=> √x-3=0
<=>x=9
b)√4x2−12x+9=x - 3
<=> √(2x -3)2 =x-3
<=> 2x-3=x-3
<=>2x-x=-3+3
<=>x=0
c)√x2+6x+9=3x-1
<=> √(x+3)2 =3x-1
<=> x+3=3x-1
<=> -2x=-4
<=> x=2
Nhớ cho mình 1 tim nha bạn
Sau em nên gõ các kí hiệu toán học ở phần Σ để mọi người dễ dàng đọc hơn nhé.
a
ĐK: \(x^2-2x+1>0\)
PT \(\Leftrightarrow\sqrt{\left(x-1\right)^2}+x-6x+9=0\)
\(\Leftrightarrow\left|x-1\right|-5x+9=0\\ \Leftrightarrow\left|x-1\right|=-9+5x\\ \Leftrightarrow\left[{}\begin{matrix}x-1=-9+5x\\1-x=-9+5x\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=2\left(nhận\right)\\x=\dfrac{10}{6}\left(nhận\right)\end{matrix}\right.\)
b
ĐK: \(\left\{{}\begin{matrix}2x^2-3>0\\4x-3>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x>\dfrac{\sqrt{6}}{2}\\x< -\dfrac{\sqrt{6}}{2}\end{matrix}\right.\\x>\dfrac{3}{4}\end{matrix}\right.\Leftrightarrow x>\dfrac{\sqrt{6}}{2}\)
PT \(\Leftrightarrow2x^2-3=4x-3\)
\(\Leftrightarrow2x^2-4x=0\\ \Leftrightarrow2x\left(x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\left(loại\right)\\x=2\left(nhận\right)\end{matrix}\right.\)
c
ĐK: \(\left\{{}\begin{matrix}1-x^2\ge0\\x-1\ge0\end{matrix}\right.\Leftrightarrow x=1\)
PT \(\Leftrightarrow1-x^2=x-1\)
\(\Leftrightarrow x^2+x-2=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1\left(nhận\right)\\x=-2\left(loại\right)\end{matrix}\right.\)