K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 6 2019

Trước hết bằng phép biến đổi tương đương ; ta chứng minh bất đẳng thức phụ sau:

\(\sqrt{a^2+b^2}+\sqrt{c^2+d^2}\ge\sqrt{\left(a+c\right)^2+\left(b+d\right)^2}...\)

Biểu diễn: 

\(y=\sqrt{2}\left(\sqrt{x^2-x+\frac{5}{2}}+\sqrt{x^2-2x+2}\right)\)

  \(=\sqrt{2}\left(\sqrt{\left(x-\frac{1}{2}\right)^2+\frac{9}{4}}+\sqrt{\left(1-x\right)^2+1}\right)\)

  \(\ge\sqrt{2}\sqrt{\left(x-\frac{1}{2}+1-x\right)^2+\left(\frac{3}{2}+1\right)^2}=\sqrt{13}.\)

Vậy giá trị nhỏ nhất của \(y=\sqrt{13}\Leftrightarrow x=\frac{4}{5}.\)

NV
2 tháng 11 2021

\(2x^2-4x+5=2\left(x^2-2x+1\right)+3=2\left(x-1\right)^2+3\ge3\)

\(\Rightarrow y\ge2+2\sqrt{3}\)

\(y_{min}=2+2\sqrt{3}\) khi \(x=1\)

14 tháng 9 2020

ko bt tự làm đi!!
 

AH
Akai Haruma
Giáo viên
30 tháng 8 2021

Lời giải:

$y=2\sin ^2x+\sqrt{3}\sin 2x=1-\cos 2x+\sqrt{3}\sin 2x$

$=1-(\cos 2x-\sqrt{3}\sin 2x)$

Áp dụng BĐT Bunhiacopxky:

$(\cos 2x-\sqrt{3}\sin 2x)^2\leq (\cos ^22x+\sin ^22x)(1+3)=4$

$\Rightarrow \cos 2x-\sqrt{3}\sin 2x\leq 2$

$\Rightarrow y=1-(\cos 2x-\sqrt{3}\sin 2x)\geq -1$

Vậy $y_{\min}=-1$. Giá trị này đạt tại $x=\frac{5\pi}{6}+2k\pi$ hoặc $x=\frac{-\pi}{6}+2k\pi$ với $k$ nguyên bất kỳ.

1 tháng 7 2021

\(y=2cos^2x-2\sqrt{3}sinx.cosx+1\)

\(=2cos^2x-1-2\sqrt{3}sinx.cosx+2\)

\(=cos2x-\sqrt{3}sin2x+2\)

\(=2\left(\dfrac{1}{2}cos2x-\dfrac{\sqrt{3}}{2}sin2x\right)+2\)

\(=2cos\left(2x+\dfrac{\pi}{3}\right)+2\)

Ta có: \(cos\left(2x+\dfrac{\pi}{3}\right)\in\left[-1;1\right]\)

\(\Rightarrow min=0\Leftrightarrow cos\left(2x+\dfrac{\pi}{3}\right)=-1\Leftrightarrow2x+\dfrac{\pi}{3}=\pi+k2\pi\Leftrightarrow x=\dfrac{\pi}{3}+k\pi\)

\(\Rightarrow max=4\Leftrightarrow cos\left(2x+\dfrac{\pi}{3}\right)=1\Leftrightarrow2x+\dfrac{\pi}{3}=k2\pi\Leftrightarrow x=-\dfrac{\pi}{6}+\dfrac{k\pi}{2}\)

1 tháng 7 2021

\(y=2cos^2x-\sqrt{3}sin2x+1=cos2x-\sqrt{3}sin2x+2\)

\(y=2.cos\left(2x+\dfrac{\pi}{3}\right)+2\)

\(\forall x\in R->-1\le cos\left(2x+\dfrac{\pi}{3}\right)\)

=> \(Min_y=2.\left(-1\right)+2=0\) 

Mặt khác, theo Bunhiacopxki:

\(\left(cos2x+\sqrt{3}sin2x\right)^2\le\left(1^2+\sqrt{3}^2\right)\left(cos^22x+sin^22x\right)=4\)

=>\(Max_y=4\)