K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 6 2019

2 - 8 = -6

4 + 3 + 4 =11

~k mik nhé~

6 tháng 6 2019

trả lời 

2-8=-6

4+3+4=11

chúc bạn học tốt!

11 tháng 5 2018

2 + 2 = 4 nha !!!

kb nha !!!

11 tháng 5 2018

2+2=4 sao mà ngốc thế 

9 tháng 12 2021

???????????????????????????????????????????????????

CHƯA ĐI

25 tháng 8 2018

tai sao

25 tháng 8 2018

mk báo cáo đó

18 tháng 2 2016

Ai trả lời được thì trả lời cò không trả lời được thì đừng có nói la em không biết là hoặc là em mới học lớp 5...

18 tháng 2 2016

Nhớ trả lời đầy đủ nha mn

22 tháng 4 2017

=101 nha ban 

22 tháng 4 2017

101

k nha

14 tháng 9 2018

là s???

mk chẳng hỉu j

mk nhak

Thanks

14 tháng 9 2018

mợi người nhớ nha ko là mất điểm đó mình bị òi hê hê kb vs mk lun đi

Kham khảo đề tự luận này nè bọn mình thi chúng đấy

Câu 1 (2,0 điểm) Thực hiện phép tính:

a) 2xy.3x2y3

b) x.(x2 - 2x + 5)

c) (3x2 - 6x) : 3x

d) (x2 – 2x + 1) : (x – 1)

Câu 2 (2,0 điểm). Phân tích các đa thức sau thành nhân tử:

a) 5x2y - 10xy2

b) 3(x + 3) – x2 + 9

c) x2 – y2 + xz - yz

Câu 3 (2,0 điểm). Cho biểu thức: Đề thi hk1 môn toán lớp 8

a) Với điều kiện nào của x thì giá trị của biểu thức A được xác định?

b) Rút gọn biểu thức A.

c) Tìm giá trị của biểu thức A tại x = 1.

Câu 4 (3,5 điểm). Cho tam giác MNP vuông tại M, đường cao MH. Gọi D, E lần lượt là chân các đường vuông góc hạ từ H xuống MN và MP.

a) Chứng minh tứ giác MDHE là hình chữ nhật.

b) Gọi A là trung điểm của HP. Chứng minh tam giác DEA vuông.

c) Tam giác MNP cần có thêm điều kiện gì để DE = 2EA.

Câu 5 (0,5 điểm). Cho a + b = 1. Tính giá trị của các biểu thức sau:

M = a3 + b3 + 3ab(a2 + b2) + 6a2b2(a + b).

Tham khảo nek :

Bài 1: (3 điểm) Giải phương trình và bất phương trình:

Đề kiểm tra Toán 8 | Đề thi Toán 8

C) x – 2)2 + 2(x – 1) ≤ x2 + 4

Bài 2: (2 điểm) Một ô tô đi từ A đến B với vận tốc 60km/h và đi từ B về A với vận tốc 45km/h. Thời gian cả đi và về hết 7 giờ. Tính quãng đường AB.

Bài 3: (1 điểm)Chứng minh rằng nếu a + b = 1 thì a2 + b2 ≥ 1/2

Bài 4: (4 điểm) Cho hình thang ABCD (AB // CD) có AB = AD = CD/2. Gọi M là trung điểm của CD và H là giao điểm của AM và BD.

a) Chứng minh tứ giác ABMD là hình thoi

b) Chứng minh BD ⊥ BC

c) Chứng minh ΔAHD và ΔCBD đồng dạng

d) Biết AB = 2,5cm; BD = 4cm. Tính độ dài cạnh BC và diện tích hình thang ABCD.

Đáp án và Hướng dẫn giải

Bài 1

a) Điều kiện: x + 2 ≠ 0 và x – 2 ≠ 0 ⇔ x ≠ ± 2

(Khi đó: x2 – 4 = (x + 2)(x – 2) ≠ 0)

Đề kiểm tra Toán 8 | Đề thi Toán 8

Vậy tập nghiệm của pt là: S = {-1; 1}

b) Điều kiện: 2x ≥ 0 ⇔ x ≥ 0

Khi đó: |x – 5| = 2x ⇔ x – 5 = 2x hoặc x – 5 = -2x

⇔ x = -5 hoặc x = 5/3

Vì x ≥ 0 nên ta lấy x = 5/3 . Tập nghiệm : S = {5/3}

c) x – 2)2 + 2(x – 1) ≤ x2 + 4

⇔ x2 – 4x + 4 + 2x – 2 ≤ x2 + 4

⇔ -2x ≤ 2

⇔ x ≥ -1

Tập nghiệm S = {x | x ≥ -1}

Bài 2

Gọi x (km) là quãng đường AB (x > 0)

Thời gian đi từ A đến B là: x/60 (giờ)

Thời gian đi từ B về A là: x/45 (giờ)

Theo đề ra, ta có phương trình:

Đề kiểm tra Toán 8 | Đề thi Toán 8

⇔ 3x + 4x = 7.180 ⇔ 7x = 7.180 ⇔ x = 180 (nhận)

Trả lời: Quãng đường AB dài 180km.

Bài 3

Ta có: a + b = 1 ⇔ b = 1 – a

Thay vào bất đẳng thức a2 + b2 ≥ 1/2 , ta được:

a2 + (1 – a)2 ≥ 1/2 ⇔ a2 + 1 – 2a + a2 ≥ 1/2

⇔ 2a2 – 2a + 1 ≥ 1/2 ⇔ 4a2 – 4a + 2 ≥ 1

⇔ 4a2 – 4a + 1 ≥ 0 ⇔ (2a – 1)2 ≥ 0 (luôn đúng)

Vậy bất đẳng thức được chứng minh

Bài 4

Đề kiểm tra Toán 8 | Đề thi Toán 8

a) Ta có: AB = AD = CD/2 và M là trung điểm của CD (gt)

⇔ AB = DM và AB // DM

Do đó tứ giác ABMD là hình bình hành có AB = AD. Vậy ABMD là hình thoi.

b) M là trung điểm của CD nên BM là trung tuyến của ΔBDC mà MB = MD = MC. Do đó ΔBDC là tam giác vuông tại B hay DB ⊥ BC

c) ABMD là hình thoi (cmt) ⇔ ∠D1 = ∠D2

Do đó hai tam giác vuông AHD và CBD đồng dạng (g.g)

d) Ta có :

Đề kiểm tra Toán 8 | Đề thi Toán 8

Xét tam giác vuông AHB, ta có :

Đề kiểm tra Toán 8 | Đề thi Toán 8

Dễ thấy tứ giác ABCM là hình bình hành (AB // CM và AB = CM)

⇒ BC = AM = 3 (cm)

Ta có:

Đề kiểm tra Toán 8 | Đề thi Toán 8

M là trung điểm của DC nên

SBMD = SBMC = SBCD/2 = 3 (cm2) (chung đường cao kẻ từ B và MD = MC)

Mặt khác ΔABD = ΔMDB (ABCD là hình thoi)

⇔ SABD = SBMD = 3 (cm2)

Vậy SABCD = SABD + SBMD + SBMC = 9 (cm2)