K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 6 2019

a/ \(\frac{\sqrt{x^2-4x+4}}{x-2}=\frac{\sqrt{\left(x-2\right)^2}}{x-2}=\frac{\left|x-2\right|}{x-2}\)

có x<2\(\Rightarrow\left|x-2\right|=2-x\)

\(\Rightarrow\frac{2-x}{x-2}\)

b/ \(\frac{\sqrt{9x^2-6x+1}}{9x^2-1}=\frac{\sqrt{\left(3x-1\right)^2}}{\left(3x-1\right)\left(3x+1\right)}=\frac{\left|3x-1\right|}{\left(3x-1\right)\left(3x+1\right)}\)

Có x>\(\frac{1}{3}\Rightarrow\left|3x-1\right|=3x-1\)

\(\Rightarrow\frac{3x-1}{\left(3x-1\right)\left(3x+1\right)}=\frac{1}{3x+1}\)

Bài 1: 

a) \(\dfrac{a+\sqrt{a}}{\sqrt{a}}=\sqrt{a}+1\)

b) \(\dfrac{\sqrt{\left(x-3\right)^2}}{3-x}=\dfrac{\left|x-3\right|}{3-x}=\pm1\)

Bài 2: 

a) \(\dfrac{\sqrt{9x^2-6x+1}}{9x^2-1}=\dfrac{\left|3x-1\right|}{\left(3x-1\right)\left(3x+1\right)}=\pm\dfrac{1}{3x+1}\)

b) \(4-x-\sqrt{x^2-4x+4}=4-x-\left|x-2\right|=\left[{}\begin{matrix}6-2x\left(x\ge2\right)\\2\left(x< 2\right)\end{matrix}\right.\)

 

9 tháng 5 2018

b)

)\(\sqrt{\frac{4}{\left(2-\sqrt{5}\right)^2}}-\sqrt{\frac{4}{\left(2+\sqrt{5}\right)^2}}\)

\(\frac{2}{2-\sqrt{5}}-\frac{2}{2+\sqrt{5}}\)

=\(\frac{2\left(2+\sqrt{5}\right)-2\left(2-\sqrt{5}\right)}{\left(2-\sqrt{5}\right)\left(2+\sqrt{5}\right)}\)

=\(\frac{4+2\sqrt{5}-4+2\sqrt{5}}{2^2-\sqrt{5}^2}\)

=\(\frac{4\sqrt{5}}{4-5}\)

=\(\frac{4\sqrt{5}}{-1}\)

\(-4\sqrt{5}\)

10 tháng 8 2020

\(P=\frac{3x+3\sqrt{x}-3-\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)-\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{x+\sqrt{x}-2}\)

\(P=\frac{3x+3\sqrt{x}-3-x+1-x+4}{x+\sqrt{x}-2}\)

\(P=\frac{x+3\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)

\(P=\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}=\frac{\sqrt{x}+1}{\sqrt{x}-1}\)

26 tháng 8 2018

1,

\(D=\frac{1}{\sqrt{h+2\sqrt{h-1}}}+\frac{1}{\sqrt{h-2\sqrt{h-1}}}\)

\(=\frac{1}{\sqrt{h-1+2\sqrt{h-1}+1}}+\frac{1}{\sqrt{h-1-2\sqrt{h-1}+1}}\)

\(=\frac{1}{\sqrt{h-1}+1}+\frac{1}{\sqrt{h-1}-1}\)

\(=\frac{\sqrt{h-1}-1+\sqrt{h-1}+1}{h-1-1}\)

\(=\frac{2\sqrt{h-1}}{h-2}\)

Thay \(h=3\)vào D ta có:

\(D=\frac{2\sqrt{3-1}}{3-2}=2\sqrt{2}\)

Vậy với \(h=3\)thì \(D=2\sqrt{2}\)

2,

a, \(\sqrt{x-1}+\sqrt{4x-4}-\sqrt{25x-25}+2=0\)(ĐK: \(x\ge1\))

\(\Leftrightarrow\sqrt{x-1}+2\sqrt{x-1}-5\sqrt{x-1}+2=0\)

\(\Leftrightarrow-2\sqrt{x-1}=-2\)

\(\Leftrightarrow\sqrt{x-1}=1\Leftrightarrow x=2\left(TM\right)\)

Vậy PT có nghiệm là \(x=2\)

b, \(\sqrt{9x^2+18}+2\sqrt{x^2+2}-\sqrt{25x^2+50}+3=0\)(ĐK: \(-\sqrt{2}\le x\le\sqrt{2}\))

\(\Leftrightarrow3\sqrt{x^2+2}+2\sqrt{x^2+2}-5\sqrt{x^2+2}=-3\)

\(\Leftrightarrow0=-3\)(vô lí)

Vậy PT đã cho vô nghiệm.

8 tháng 12 2016

thế x=4 thì sao

8 tháng 12 2016

\(dk:x\ne\left\{1,\sqrt{2},4\right\};x\ge0\)dat \(\sqrt{x}=t\)

\(A=\left(\frac{3t^2}{t^2-t-2}+\frac{1}{t-1}+\frac{1}{t-2}\right)\left(t^2-1\right)==\left(\frac{3t^2}{\left(t-2\right)\left(t-1\right)}+\frac{1}{t-1}+\frac{1}{t-2}\right)\left(t^2-1\right)\)

\(=\left(\frac{3t^2}{\left(t-2\right)\left(t-1\right)}+\frac{t-2}{t-1}+\frac{t-1}{t-2}\right)\left(t-1\right)\left(t+1\right)=3t^2+2t-3\)

\(A=3x+2\sqrt{x}-3\)

b

\(\frac{1}{A}=\frac{1}{3x+2\sqrt{x}-3}\Rightarrow\orbr{\begin{cases}3x+2\sqrt{x}-3=-1\\3x+2\sqrt{x}-3=1\end{cases}}\)tư làm tiếp