Cho \(\Delta ABC\) cân ở A. Trên cạnh AB lấy điểm M, trên tia đối tia CA lấy điểm N sao cho BM = CN. Gọi K là trung điểm MN.
Chứng minh ba điểm B, K, C thẳng hàng.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tam giác BMK và tam giác CNK có:
BM=CN (gt)
Góc BKM = góc CKN (hai góc đối đỉnh)
MK=NK (K là trung điểm MN)
=> tam giác BMK=tam giác CNK (c.g.c)
=> BK=CK
=> K là trung điểm BC
=> B,K,C thẳng hàng.
Cài này bạn tự vẽ hình nha , mik ko vẽ được trên bàn phím .
Xét tam giác BMK và tam giác CNK có :
BM = CN ( gt ) .
Góc BKM = góc CKN .( Hai góc đối đỉnh ) .
MK = NK ( K là trung điểm MN ) .
Suy ra tam giác BMK = tam giác CNK .( c . g .c ) .
Suy ra BK = CK .
Suy ra K là trung điểm của BC .
Suy ra B , K , C thẳng hàng .
Xét tam giác BMK và tam giác CNK có:
BM=CN (gt)
Góc BKM=góc CKN (hai góc đối đỉnh)
MK=NK (K là trung điểm MN)
=> tam giác BMK=tam giác CNK (c.g.c)
=> BK=CK
=> K là trung điểm BC
=> B,K,C thẳng hàng.
Bài mình vừa sưu tập được của bạn lanphung https://hoidap247.com/thong-tin-ca-nhan/82620
Mik viết nhầm toán thành văn. Ok! Nếu bạn biết hãy giải giúp mik. Đừng hạch họe lung tung.
(tu ve hinh nhe)
qua M ke MH//AC, h thuoc BC
BC cat MN o K'
=>gocHMK =goc CNK' (1)
lai co gocB=gocC, gocMHB=gocC do dong vi=>gocMHB=gocB suy ra tam giac MBH can tai m
suy ra MH=MB=CN
ma gocMHK'=gocNCK'
ket hop voi 1 suy ra tam giac K'MH=tam giacK'NC(g.c.g)
suy ra K' la trung diem cua MN
suy rea K' trung K
suy ra B,C,K thang hang
Xét tam giác BMK và tam giác CNK có:
BM=CN (gt)
Góc BKM=góc CKN (hai góc đối đỉnh)
MK=NK (K là trung điểm MN)
=> tam giác BMK=tam giác CNK (c.g.c)
=> BK=CK
=> K là trung điểm BC
=> B,K,C thẳng hàng.
#)Giải :
( Hình tự vẽ nha :P )
Xét \(\Delta BMK\)và \(\Delta CNK\)có :
BM = CN ( gt )
\(\widehat{BKM}=\widehat{CKN}\)( hai gọc đối đỉnh )
MK = NK ( K là trung điểm của MN )
=> \(\Delta BMK=\Delta CNK\)( c.g.c )
=> BK = CK ( hai cạnh tương ứng bằng nhau )
=> K là trung điểm của BC
=> B,K,C thẳng hàng
#~Will~be~Pens~#