Cho biểu thức \(A=2x+\sqrt{x^2-2x+1}\)
a) Rút gọn
b) Tìm x để A=1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ĐKXĐ: \(\hept{\begin{cases}2x-1\ge0\\2x\ge2\sqrt{2x-1}\end{cases}}\)\(\Leftrightarrow x\ge\frac{1}{2}\)
A=\(\sqrt{2x-1+1+2\sqrt{2x-1}}\)\(-\sqrt{2x-1+1-2\sqrt{2x-1}}\)
=\(\sqrt{\left(\sqrt{2x-1}+1\right)^2}\)\(-\sqrt{\left(\sqrt{2x-1}-1\right)^2}\)
=\(\sqrt{2x-1}+1-|\sqrt{2x-1}-1|\)
Nếu \(x\ge1\)thì A=\(\sqrt{2x-1}+1-\left(\sqrt{2x-1}-1\right)\)=2.
Nếu \(\frac{1}{2}\le x< 1\)thì A=\(\sqrt{2x-1}+1-\left(1-\sqrt{2x-1}\right)\)=\(2\sqrt{2x-1}\).
b)A<1 thì \(\frac{1}{2}\le x< 1\)và \(2\sqrt{2x-1}< 1\)\(\Leftrightarrow4\left(2x-1\right)< 1\)\(\Leftrightarrow8x-4< 1\)\(\Leftrightarrow x< \frac{5}{8}\)(tm)
Vậy A<1 thì \(\frac{1}{2}\le x< \frac{5}{8}\).
a) \(ĐKXĐ:x>0\)
\(A=\dfrac{x^2+\sqrt{x}}{x-\sqrt{x}+1}-\dfrac{2x+\sqrt{x}}{\sqrt{x}}+1\)
\(\Leftrightarrow A=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{x-\sqrt{x}+1}-\dfrac{\sqrt{x}\left(2\sqrt{x}+1\right)}{\sqrt{x}}+1\)
\(\Leftrightarrow A=x+\sqrt{x}-2\sqrt{x}-1+1\)
\(\Leftrightarrow A=x-\sqrt{x}\)
b) Để A = 0
\(\Leftrightarrow x-\sqrt{x}=0\)
\(\Leftrightarrow\sqrt{x}\left(\sqrt{x}-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=0\\\sqrt{x}=1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(ktm\right)\\x=1\left(tm\right)\end{matrix}\right.\)
vậy ...
a) \(A=\left(\dfrac{\sqrt{x}}{\sqrt{x}+1}-\dfrac{x}{x-1}\right):\left(\dfrac{2x}{x-1}-\dfrac{\sqrt{x}}{\sqrt{x}-1}\right)\left(x\ge0,x\ne1\right)\)
\(=\left(\dfrac{\sqrt{x}}{\sqrt{x}+1}-\dfrac{x}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right):\left(\dfrac{2x}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\dfrac{\sqrt{x}}{\sqrt{x}-1}\right)\)
\(=\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)-x}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}:\dfrac{2x-\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}:\dfrac{x-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}.\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\sqrt{x}}=-\dfrac{1}{\sqrt{x}-1}\)
b) \(A=2\Rightarrow\dfrac{-1}{\sqrt{x}-1}=2\Rightarrow-1=2\sqrt{x}-2\Rightarrow2\sqrt{x}=1\Rightarrow\sqrt{x}=\dfrac{1}{2}\)
\(\Rightarrow x=\dfrac{1}{4}\)
Lời giải:
ĐK: $x\geq 0; x\neq 1$
a.
\(A=\frac{\sqrt{x}(\sqrt{x}-1)-x}{(\sqrt{x}-1)(\sqrt{x}+1)}:\frac{2x-\sqrt{x}(\sqrt{x}+1)}{(\sqrt{x}-1)(\sqrt{x}+1)}\)
\(=\frac{-\sqrt{x}}{(\sqrt{x}-1)(\sqrt{x}+1)}:\frac{x-\sqrt{x}}{(\sqrt{x}-1)(\sqrt{x}+1)}=\frac{-\sqrt{x}}{x-\sqrt{x}}=\frac{-\sqrt{x}}{\sqrt{x}(\sqrt{x}-1)}=\frac{1}{1-\sqrt{x}}\)
b.
$A=2\Leftrightarrow 1-\sqrt{x}=\frac{1}{2}$
$\Leftrightarrow \sqrt{x}=\frac{1}{2}\Leftrightarrow x=\frac{1}{4}$ (tm)
Bạn nên viết đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để mọi người hiểu đề của bạn hơn nhé.
\(1,\\ a,ĐK:\left\{{}\begin{matrix}x\ge0\\x+5\ge0\end{matrix}\right.\Leftrightarrow x\ge0\\ b,Sửa:B=\left(\sqrt{3}-1\right)^2+\dfrac{24-2\sqrt{3}}{\sqrt{2}-1}\\ B=4-2\sqrt{3}+\dfrac{2\sqrt{3}\left(\sqrt{2}-1\right)}{\sqrt{2}-1}\\ B=4-2\sqrt{3}+2\sqrt{3}=4\\ 3,\\ =\left[1-\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{1+\sqrt{x}}\right]\cdot\dfrac{\sqrt{x}-3+2-2\sqrt{x}}{\left(1-\sqrt{x}\right)\left(\sqrt{x}-3\right)}-2\\ =\left(1-\sqrt{x}\right)\cdot\dfrac{-\sqrt{x}-1}{\left(1-\sqrt{x}\right)\left(\sqrt{x}-3\right)}-2\\ =\dfrac{-\sqrt{x}-1}{\sqrt{x}-3}-2=\dfrac{-\sqrt{x}-1-2\sqrt{x}+6}{\sqrt{x}-3}=\dfrac{-3\sqrt{x}+5}{\sqrt{x}-3}\)
a) \(A=2x+\sqrt{x^2-2x+1}=2x+\sqrt{\left(x-1\right)^2}=2x+\left|x-1\right|\)
với x \(\ge\)1 thì A = 2x + x - 1 = 3x - 1
với x < 1 thì A = 2x + 1 - x = x + 1
b) A = \(2x+\left|x-1\right|=1\)
TH1 : x \(\ge\)1 thì A = 3x - 1 = 1 \(\Rightarrow\)x = \(\frac{2}{3}\)( ko t/m )
TH2 : x < 1 thì A = x + 1 = 1 \(\Rightarrow\)x = 0 ( t/m )
vậy x = 0
\(A=2x+\sqrt{x^2-2x+1}=2x+\sqrt{\left(x-1\right)^2}=2x+|x-1|\)
Để A=1 thì \(2x+|x-1|=1\)\(\left(1\right)\)
Với \(x\ge1\)thì (1) trở thành \(2x+x-1=1\Leftrightarrow3x=2\Leftrightarrow x=\frac{2}{3}\)(loại)
Với \(x< 1\)thì (1) trở thành \(2x-x+1=1\Leftrightarrow x=0\)(chọn)
Vậy \(S=0\)