tìm GTNN của \(P=\sqrt{x+9-6\sqrt{x}}+\sqrt{x+1-2\sqrt{x}}\)với \(x\ge0\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(B=\dfrac{2x+3\sqrt{x}+9-x+3\sqrt{x}}{x-9}=\dfrac{x+9}{x-9}\)
b: \P=A:B
\(=\dfrac{2\sqrt{x}-1}{\sqrt{x}-3}\cdot\dfrac{x-9}{x+9}=\dfrac{\left(2\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}{x+9}>=\dfrac{-1\cdot3}{9}=\dfrac{-1}{3}\)
Dấu = xảy ra khi x=0
\(B=\dfrac{\sqrt{x}-1}{\sqrt{x}+2}=\dfrac{\sqrt{x}+2-3}{\sqrt{x}+2}=1-\dfrac{3}{\sqrt{x}+2}\)
B nhỏ nhất khi \(\dfrac{3}{\sqrt{x}+2}\) lớn nhất \(\Rightarrow\sqrt{x}+2\) nhỏ nhất \(\Rightarrow\sqrt{x}\) nhỏ nhất
Mà \(x\ge0\Rightarrow\sqrt{x}\ge0\Rightarrow\sqrt{x}_{min}=0\)
\(\Rightarrow B_{min}=-\dfrac{1}{2}\) khi \(x=0\)
\(B=\dfrac{\sqrt{x}-1}{\sqrt{x}+2}=\dfrac{\sqrt{x}+2-3}{\sqrt{x}+2}=1-\dfrac{3}{\sqrt{x}+2}\)
\(\sqrt{x}+2>=2\forall x\) thỏa mãn ĐKXĐ
=>\(\dfrac{3}{\sqrt{x}+2}< =\dfrac{3}{2}\forall x\) thỏa mãn ĐKXĐ
=>\(-\dfrac{3}{\sqrt{x}+2}>=-\dfrac{3}{2}\forall x\) thỏa mãn ĐKXĐ
=>\(-\dfrac{3}{\sqrt{x}+2}+1>=-\dfrac{3}{2}+1=-\dfrac{1}{2}\forall x\) thỏa mãn ĐKXĐ
=>\(B>=-\dfrac{1}{2}\forall x\) thỏa mãn ĐKXĐ
Dấu '=' xảy ra khi x=0
a) \(B=\dfrac{\sqrt{x}}{\sqrt{x}-3}+\dfrac{8\sqrt{x}+24}{x-9}\)
\(=\dfrac{\sqrt{x}\left(\sqrt{x}+3\right)+8\sqrt{x}+24}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(=\dfrac{x+3\sqrt{x}+8\sqrt{x}+24}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(=\dfrac{\left(\sqrt{x}+3\right)\left(\sqrt{x}+8\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(=\dfrac{\sqrt{x}+8}{\sqrt{x}-3}\) (đpcm)
b) Mình không biết làm bạn thông cảm.
Sửa đề: Tìm GTLN
\(A=\dfrac{-3\sqrt{x}-6+11}{\sqrt{x}+2}=-3+\dfrac{11}{\sqrt{x}+2}< =\dfrac{11}{2}-3=\dfrac{5}{2}\)
Dấu = xảy ra khi x=0
a.
\(B=\dfrac{\sqrt{x}+1+\sqrt{x}\left(\sqrt{x}-1\right)+2\sqrt{x}}{1-x}=\dfrac{\sqrt{x}+1+x-\sqrt{x}+2\sqrt{x}}{1-x}\)
\(=\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\)
b.
\(P=\dfrac{B}{A}=\dfrac{x+3}{\sqrt{x}+1}:\dfrac{\sqrt{x}-1}{\sqrt{x}+1}=\dfrac{\left(x+3\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}=\dfrac{x+3}{\sqrt{x}-1}=\dfrac{x-1+4}{\sqrt{x}-1}\)
\(=\sqrt{x}+1+\dfrac{4}{\sqrt{x}-1}\)\(=\sqrt{x}-1+\dfrac{4}{\sqrt{x}-1}+2\)
Theo BĐT AM - GM ta có: \(\sqrt{x}-1+\dfrac{4}{\sqrt{x}-1}\ge2\sqrt{\left(\sqrt{x}-1\right)\dfrac{4}{\sqrt{x}-1}}=4\)
\(\Rightarrow\dfrac{1}{P}\ge6\Rightarrow Min_{\dfrac{1}{P}}=6\)
Dấu "=" xảy ra \(\Leftrightarrow\left(\sqrt{x}-1\right)^2=4\Rightarrow x=9\) (loại trường hợp \(\sqrt{x}-1=-2\))
Vậy GTNN của biểu thức \(\dfrac{1}{P}=6\) khi x = 9.
a: M=A:B
\(=\dfrac{x+\sqrt{x}+10-\sqrt{x}-3}{x-9}\cdot\dfrac{\sqrt{x}-3}{1}=\dfrac{x+7}{\sqrt{x}+3}\)
b: \(M=\dfrac{x-9+16}{\sqrt{x}+3}=\sqrt{x}-3+\dfrac{16}{\sqrt{x}+3}\)
=>\(M=\sqrt{x}+3+\dfrac{16}{\sqrt{x}+3}-6>=2\sqrt{16}-6=2\)
Dấu = xảy ra khi (căn x+3)^2=16
=>căn x+3=4
=>x=1
P=\(\sqrt{(x-3)^2}\)+ \(\sqrt{\left(x-1\right)^2}\)
= \(|x-3|\)+ \(|x-1|\)
Trường hợp 1: \(|x-3|\) = (x-3)
\(\Leftrightarrow\)x-3+x-1 \(\Leftrightarrow\) x=-2(KTM)
Trường hợp 2: \(|x-3|\) = -(x-3)=-x+3
\(\Leftrightarrow\) -x+3+x-1 \(\Leftrightarrow\) x=2 (TMĐK)
MÌNH CHỈ GIẢI ĐƯỢCTỚI ĐÂY THÔI! BẠN XEM BỔ SUNG NHA! -_- !
\(P=\sqrt{x+9-6\sqrt{x}}+\sqrt{x+1-2\sqrt{x}}\)
\(P=\sqrt{\left(\sqrt{x}-3\right)^2}+\sqrt{\left(\sqrt{x}-1\right)^2}\)
\(P= \left|\sqrt{x}-3\right|+\left|\sqrt{x}-1\right|\)
\(P=\left|3-\sqrt{x}\right|+\left|\sqrt{x}-1\right|\ge\left|3-\sqrt{x}+\sqrt{x}-1\right|=2\)
Vậy MIN = 2 <=> \(\sqrt{3}\ge x\ge\sqrt{1}\)