cho tam giác ABC có \(\widehat{AOB}=150^o\)(O nằm trong tam giác ). Cmr: \(OB^2=OC^2+OA^2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C O I
Theo bất đẳng thức tam giác ta có
\(\Delta OAB:\)\(AB< OA+OB\)
\(\Delta OAC:\)\(AC< OA+OC\)
\(\Delta OBC:\)\(BC< OB+OC\)
\(\Rightarrow AB+BC+AC< 2\left(OA+OB+OC\right)\)
\(\Leftrightarrow\frac{AB+BC+AC}{2}< OA+OB+OC\)(1)
Gọi I là giao điểm của BO và AC
\(\Delta OAI:-OA< AI+OI\)
\(\Delta IBC:-IB< IC+BC\)
\(\Rightarrow OA+IB< AI+OI+IC+BC=AC+BC+OI\)
\(\Leftrightarrow OA+IB-OI< AC+BC\)
\(\Leftrightarrow OA+OB< AC+BC\)(OI+OB=IB)
Chứng minh tương tự ta có \(OA+OC< AB+BC;OB+OC< AB+AC\)
\(\Rightarrow2\left(OA+OB+OC\right)< 2\left(AB+BC+AC\right)\)(CỘNG 2 VẾ CỦA 3 BẤT ĐẢNG THỨC TRÊN)
\(\Leftrightarrow OA+OB+OC< AB+BC+AC\)(2)
Từ (1),(2) suy ra điều phải chứng minh.
cho tam giác nhọn abc o thuộc tam giác có OA,OB,OC cắt BC, CA, AB tại D,E,F. CMR AO/AD+OB/BE+OC/CF=2
A B C O D E F
\(\frac{OA}{AD}=\frac{S_{AOB}}{S_{ABD}}=\frac{S_{AOC}}{S_{ACD}}=\frac{S_{AOB}+S_{AOC}}{SABC}\)
Tương tự rồi cộng lại ta đc
\(\frac{OA}{AD}+\frac{OB}{BE}+\frac{OC}{CF}=\frac{2\left(S_{AOB}+S_{BOC}+S_{COA}\right)}{S_{ABC}}=2\)
Bài Giải
Đặt SBOC=x2,SAOC=y2,SAOB=z2 ⇒SABC=SBOC+SAOC+SAOB=x2+y2+z2
Ta có : ADOD =SABCSBOC =AO+ODOD =1+AOOD =x2+y2+z2x2 =1+y2+z2x2
⇒AOOD =y2+z2x2 ⇒√AOOD =√y2+z2x2 =√y2+z2x
Tương tự ta có √OBOE =√x2+z2y2 =√x2+z2y ;√OCOF =√x2+y2z2 =√x2+y2z
⇒P=√x2+y2z +√y2+z2x +√x2+z2y ≥x+y√2z +y+z√2x +x+z√2y
=1√2 [(xy +yx )+(yz +zy )+(xz +zx )]≥1√2 (2+2+2)=3√2
Dấu "=" xảy ra khi x=y=z⇒SBOC=SAOC=SAOB=13 SABC
⇒ODOA =OEOB =OFOC =13 ⇒O là trọng tâm của tam giác ABC
Vậy MinP=3√2 khi O là trọng tâm của tam giác ABC