K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 4 2019

A B C O I

Theo bất đẳng thức tam giác ta có

\(\Delta OAB:\)\(AB< OA+OB\)

\(\Delta OAC:\)\(AC< OA+OC\)

\(\Delta OBC:\)\(BC< OB+OC\)

\(\Rightarrow AB+BC+AC< 2\left(OA+OB+OC\right)\)

\(\Leftrightarrow\frac{AB+BC+AC}{2}< OA+OB+OC\)(1)

Gọi I là giao điểm của BO  và AC

\(\Delta OAI:-OA< AI+OI\)

\(\Delta IBC:-IB< IC+BC\)

\(\Rightarrow OA+IB< AI+OI+IC+BC=AC+BC+OI\)

\(\Leftrightarrow OA+IB-OI< AC+BC\)

\(\Leftrightarrow OA+OB< AC+BC\)(OI+OB=IB)

Chứng minh tương tự ta có \(OA+OC< AB+BC;OB+OC< AB+AC\)

\(\Rightarrow2\left(OA+OB+OC\right)< 2\left(AB+BC+AC\right)\)(CỘNG 2 VẾ CỦA 3 BẤT ĐẢNG THỨC TRÊN)

\(\Leftrightarrow OA+OB+OC< AB+BC+AC\)(2)

Từ (1),(2) suy ra điều phải chứng minh.

9 tháng 9 2017

A B C O D E F

\(\frac{OA}{AD}=\frac{S_{AOB}}{S_{ABD}}=\frac{S_{AOC}}{S_{ACD}}=\frac{S_{AOB}+S_{AOC}}{SABC}\)

Tương tự rồi cộng lại ta đc

\(\frac{OA}{AD}+\frac{OB}{BE}+\frac{OC}{CF}=\frac{2\left(S_{AOB}+S_{BOC}+S_{COA}\right)}{S_{ABC}}=2\)

8 tháng 9 2017

Bài Giải

Đặt SBOC=x2,SAOC=y2,SAOB=z2 ⇒SABC=SBOC+SAOC+SAOB=x2+y2+z2

Ta có : ADOD =SABCSBOC =AO+ODOD =1+AOOD =x2+y2+z2x2 =1+y2+z2x2 

⇒AOOD =y2+z2x2 ⇒√AOOD =√y2+z2x2 =√y2+z2x 

Tương tự ta có √OBOE =√x2+z2y2 =√x2+z2y ;√OCOF =√x2+y2z2 =√x2+y2z 

⇒P=√x2+y2z +√y2+z2x +√x2+z2y ≥x+y√2z +y+z√2x +x+z√2y 

           =1√2 [(xy +yx )+(yz +zy )+(xz +zx )]≥1√2 (2+2+2)=3√2

Dấu "=" xảy ra khi x=y=z⇒SBOC=SAOC=SAOB=13 SABC

⇒ODOA =OEOB =OFOC =13 ⇒O là trọng tâm của tam giác ABC

Vậy MinP=3√2 khi O là trọng tâm của tam giác ABC