cho x2 + x + 1=0
tính: x2004 + \(\frac{1}{x^{2004}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có 4 x 4 = 16
6 x 4 = 24
4 x 4 = 16.
Như vậy 2004 x 2004 x… X 2004 có tận cùng lặp đi lặp lại băng 6 ( nếu số số hạng là chẵn ), bằng 4 ( nếu số số hạng là lẻ ).
Vậy A có tận cùng là 4 vì có 2003 thừa số.
3 x 3 = 9
9 x 3 = 27
7 x 3 = 21
1 x 3 = 3
3 x 3 = 9.
Quy luật cũng lặp đi lặp lại. Với số số hạng là
2 – 3 – 4 – 5
6 – 7 – 8 – 9
( khoảng cách là 4)
2004 chia hết 4 nên trong 4 hiệu 2004 – 2, 2004 – 3, 2004 – 4, 2004 – 5 chỉ có 2004 – 4 chia hết cho 4.
Vậy B có tận cùng là 1.
(3x3x3x3 có tận cùng là 1).
A + B có tận cùng là 4 + 1 = 5.
Vậy A + B chia hết cho 5.
tận cùng của A là ; 6,4,6,4,6,......mà 2003 lẻ nên tận cùng A là : 4 .tận cùng B là : 9,7,1,3,9,7,1,3,9,7.1......ta thấy cứ 4 thừa số thì xuất hiên số 1 ở tận cùng trong kết quả mà 2004 thừa số vừa đủ cho 501 nhóm : 2004 : 4 = 501 vậy số tận cùng của B là ;1 .vậy A+B có tận cùng là 4+1 =5 nên A+B chia hết cho 5
a) \(\frac{x+1}{2004}+\frac{x+2}{2003}=\frac{x+3}{2002}+\frac{x+4}{2001}\)
\(\Leftrightarrow\frac{x+2005}{2004}+\frac{x+2005}{2003}=\frac{x+2005}{2002}+\frac{x+2005}{2001}\)
\(\Leftrightarrow\left(x+2005\right)\left(\frac{1}{2004}+\frac{1}{2003}-\frac{1}{2002}-\frac{1}{2001}\right)=0\)
\(\Leftrightarrow x+2005=0\)
\(\Leftrightarrow x=-2005\)
b) Sửa đề :
\(\frac{201-x}{99}+\frac{203-x}{97}+\frac{205-x}{95}+3=0\)
\(\Leftrightarrow\frac{300-x}{99}+\frac{300-x}{97}+\frac{300-x}{95}=0\)
\(\Leftrightarrow\left(300-x\right)\left(\frac{1}{99}+\frac{1}{97}+\frac{1}{95}\right)=0\)
\(\Leftrightarrow x=300\)
c) \(\frac{2-x}{2002}-1=\frac{1-x}{2003}-\frac{x}{2004}\)
\(\Leftrightarrow\frac{2-x}{2002}+1=\frac{1-x}{2003}+1-\frac{x}{2004}+1\)
\(\Leftrightarrow\frac{2004-x}{2002}=\frac{2004-x}{2003}-\frac{2004-x}{2004}\)
\(\Leftrightarrow\left(2004-x\right)\left(\frac{1}{2002}-\frac{1}{2003}+\frac{1}{2004}\right)=0\)
\(\Leftrightarrow x=2004\)
Vậy....
x=4
=>x+1=5
A=(x+1)x^5 -(x+1)x^4+(x+1)x^3-(x+1)x^2+(x+1)x-1
=x^6+x^5-x^5-x^4+x^4+x^3-x^3-x^2+x^2-x+1
=x^6-x-1
=4^6-4-1
=4091
\(a,A=5\cdot4^5-5\cdot4^4+5\cdot4^3-5\cdot4^2+5\cdot4+1\\ A=4^4\left(20-5\right)+4^2\left(20-5\right)+\left(20-5\right)\\ A=15\left(4^4+4^2+1\right)=15\cdot273=4095\)
\(b,x=7\Leftrightarrow x+1=8\\ \Leftrightarrow B=x^{2006}-\left(x+1\right)x^{2005}+\left(x+1\right)x^{2004}-...+\left(x+1\right)x^2-\left(x+1\right)x-5\\ B=x^{2006}-x^{2006}-x^{2005}+x^{2005}+x^{2004}-...+x^3+x^2-x^2-x-5\\ B=-x-5=-12\)
\(\frac{x+4}{2000}+\frac{x+3}{2001}=\frac{x+2}{2002}+\frac{x+1}{2003}\)
\(\Leftrightarrow2+\frac{x+4}{2000}+\frac{x+3}{2001}=2+\frac{x+2}{2002}+\frac{x+1}{2003}\)
\(\Leftrightarrow\left(\frac{x+4}{2000}+1\right)+\left(\frac{x+3}{2001}+1\right)=\left(\frac{x+2}{2002}+1\right)+\left(\frac{x+1}{2001}+1\right)\)
\(\Leftrightarrow\frac{x+2004}{2000}+\frac{x+2004}{2001}=\frac{x+2004}{2002}+\frac{x+2004}{2003}\)
\(\Leftrightarrow\left(x+2004\right)\left(\frac{1}{2000}+\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}\right)=0\)
Mà \(\frac{1}{2000}+\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}\ne0\)
Suy ra x+2004=0
\(\Leftrightarrow x=-2004\)
Giả sử tồn tại \(x\) sao cho \(x^2+x+1=0\) (ví dụ trên trường số phức)
\(\Leftrightarrow x+1+\frac{1}{x}=0\Rightarrow x+\frac{1}{x}=-1\)
Ta có \(\left(x+\frac{1}{x}\right)^2=\left(-1\right)^2\Leftrightarrow x^2+\frac{1}{x^2}=-1\)
\(\left(x+\frac{1}{x}\right)^3=\left(-1\right)^3\Leftrightarrow x^3+\frac{1}{x^3}+3\left(x+\frac{1}{x}\right)=-1\Leftrightarrow x^3+\frac{1}{x^3}=2\)
Đặt \(a_n=x^n+\frac{1}{x^n}\Rightarrow a_1=-1;a_2=-1;a_3=2\)
\(a_1.a_n=\left(x+\frac{1}{x}\right)\left(x^n+\frac{1}{x^n}\right)=x^{n+1}+\frac{1}{x^{n+1}}+x^{n-1}+\frac{1}{x^{n-1}}=a_{n+1}+a_{n-1}\)
\(\Rightarrow a_{n+1}=a_1.a_n-a_{n-1}=-a_n-a_{n-1}=-\left(a_n+a_{n-1}\right)\)
Thay \(n=3;4;5;6...\) vào ta được:
\(a_4=-\left(a_3+a_2\right)=-1;a_5=-\left(a_4+a_3\right)=-1;a_6=-\left(a_5+a_4\right)=2\)
Nhìn vào quy luật ta thấy: \(a_k=-1\) nếu \(k⋮̸3\)
Và \(a_k=2\) nếu \(k⋮3\)
Do \(2004⋮3\Rightarrow a_{2004}=2\) hay \(x^{2004}+\frac{1}{x^{2004}}=2\)
Sai ngay từ giả thiết:
Có:\(x^2+x+1=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\forall x\in R\)
Vậy ta ko tính được giá trị biểu thức.