cho đương thăng (d) :\(y=mx-2m+4\) ;và parabol (p) \(y=x^2\)
tìm m để đường thẳng (d) và parabol (p) cắt tại 2 điểm phân biệt coshoanh độ x1 ; x2 sao cho x12+x22 có giá chị nhỏ nhất
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- Ta có (2) ⇔ x + 2 2 x 2 + m x - 2 = 0 ⇔ x = − 2 2 x 2 + m x − 2 = 0
Do hai phương trình tương đương nên x = −2 cũng là nghiệm của phương trình (1)
- Thay x = −2 vào (1), ta được 2 - 2 2 + m - 2 - 2 = 0 ⇔ m = 3.
- Với m = 3, ta có:
...(1) trở thành 2 x 2 + 3 x - 2 = 0 ⇔ x = - 2 hoặc x = 1 2
...(2) trở thành 2 x 3 + 7 x 2 + 4 x - 4 = 0 ⇔ x + 2 2 2 x + 1 = 0 ⇔ x = - 2 hoặc x = 1 2
Suy ra hai phương trình tương đương.
Vậy m = 3 thỏa mãn.
Đáp án cần chọn là: B
xét hoành độ giao điểm của (d) và (p)
ta có : \(\dfrac{-x^2}{4}=mx-2m-1\Leftrightarrow\dfrac{x^2}{4}+mx-2m-1=0\)
\(\Leftrightarrow x^2+4mx-8m-4=0\)
\(\Delta'=\left(2m\right)^2-\left(-8m-4\right)=4m^2+8m+4=\left(2m+2\right)^2\ge0\)
\(\Rightarrow\) (d) tiếp súc hoặc cắt (p)
TH1 : (d) tiếp xúc (p) \(\Leftrightarrow\) phương trình có nghiệm kép
ta có : \(\left(2m+2\right)^2=0\Leftrightarrow2m+2=0\Leftrightarrow2m=-2\Leftrightarrow m=-1\)
\(x_1=x_2=\dfrac{-b'}{a}=\dfrac{-2m}{1}=-2m=-2\left(-1\right)=2\)
\(x=2\Rightarrow y=\dfrac{-2^2}{4}=\dfrac{-4}{4}=-1\) vậy (d) tiếp xúc với (p) tại A\(\left(2;-1\right)\)
TH2 : (d) cắt (p) tại 2 điểm phân biệt \(\Leftrightarrow\) phương trình có nghiệm kép
\(\Leftrightarrow\) \(\left(2m+2\right)^2>0\Leftrightarrow2m+2\ne0\Leftrightarrow2m\ne-2\Leftrightarrow m\ne-1\)
th1: \(2m+2\ge0\Leftrightarrow2m\ge-2\Leftrightarrow m\ge-1\)
\(x_1=\dfrac{-2m+2m+2}{1}=2\Rightarrow y_1=\dfrac{-2^2}{4}=-1\) \(B\left(2;-1\right)\)
\(x_2=\dfrac{-2m-2m-2}{1}-4m-2\Rightarrow y_2=\dfrac{-\left(-4m-2\right)^2}{4}=\dfrac{-16m^2-8m-4}{4}=-4m^2-2m-1\)C\(\left(-4m-2;-4m^2-2m-1\right)\)
th2: \(2m+2< 0\Leftrightarrow2m< -2\Leftrightarrow m< -1\)
\(x_1=\dfrac{-2m+2+2m}{1}=2\Rightarrow y_1=\dfrac{-2^2}{4}=-1\)
D\(\left(2;-1\right)\) \(x_2=\dfrac{-2m-2m-2}{1}-4m-2\Rightarrow y_2=\dfrac{-\left(-4m-2\right)^2}{4}=\dfrac{-16m^2-8m-4}{4}=-4m^2-2m-1\)F\(\left(-4m-2;-4m^2-2m-1\right)\) vậy \(\Rightarrow\) kết luận ...................................................................................
a: d//d1
=>m-2=-m và m+7<>2m-3
=>m=1
b: d trùng với d2
=>m-2=-m^2 và m+7=-2m+1
=>m=-2 và m^2+m-2=0
=>m=-2
d: d vuông góc d4
=>-1/6(m+3)(m-2)=-1
=>(m+3)(m-2)=6
=>m^2+m-6-6=0
=>m^2+m-12=0
=>m=-4 hoặc m=3
c: Thay y=1/3 vào d3, ta được:
-2/3x+5/3=1/3
=>-2/3x=-4/3
=>x=2
Thay x=2 và y=1/3 vào (d), ta được:
2(m-2)+m+7=1/3
=>3m+3=1/3
=>3m=-8/3
=>m=-8/9
\(y'=4mx^3+2mx=2mx\left(2x^2+1\right)\)
Do \(2x\left(x^2+1\right)>0\) ;\(\forall x>0\)
\(\Rightarrow y'\ge0\) ;\(\forall x>0\) khi và chỉ khi \(m>0\)