Giúp mình bài này với mình cảm ơn nhìuuuu.
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
LO
0
ND
0
15 tháng 9 2021
\(a,ĐKXĐ:\left\{{}\begin{matrix}8-4x\ge0\\5x-10\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\le2\\x\ne2\end{matrix}\right.\Leftrightarrow x< 2\\ b,ĐKXĐ:\left\{{}\begin{matrix}\dfrac{-3}{x+2}\ge0\\x^2+2\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+2< 0\left(-3< 0;x+2\ne0\right)\\x\in R\left(x^2+2\ge2>0\right)\end{matrix}\right.\Leftrightarrow x< -2\)
VG
1
AH
Akai Haruma
Giáo viên
14 tháng 7 2023
Lời giải:
$\widehat{M_1}-\widehat{M_2}=\widehat{N_1}-\widehat{N_2}(1)$
$\widehat{M_1}+\widehat{M_2}=\widehat{N_1}+\widehat{N_2}(2)$ (cùng bằng $180^0$)
Lấy $(1)+(2)$ và thu gọn thì $\widehat{M_1}=\widehat{N_1}$
Mà 2 góc này ở vị trí so le trong nên $m\parallel n$
MD
0
OK
0
\(=\left(4+\sqrt{15}\right)\left(\sqrt{5}-\sqrt{3}\right)\sqrt{2}\sqrt{4-\sqrt{15}}\\ =\left(4+\sqrt{15}\right)\left(\sqrt{5}-\sqrt{3}\right)\sqrt{8-2\sqrt{15}}\\ =\left(4+\sqrt{15}\right)\left(\sqrt{5}-\sqrt{3}\right)\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}\\ =\left(4+\sqrt{15}\right)\left(\sqrt{5}-\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)\\ =\left(4+\sqrt{15}\right)\left(8-2\sqrt{15}\right)\\ =32-8\sqrt{15}+8\sqrt{15}-30=2\)
Mình cảm ơn bạn nhìu nha.