Tìm nghiệm của đa thức: m(x)= -4x3 + 14x2 + 10x - 11
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,Q_{\left(x\right)}=-4x^3+2x-2+2x-x^2-1\\ Q_{\left(x\right)}=-4x^3-x^2+4x-3\\ P_{\left(x\right)}=4x^3-3x+x^2+7+x\\ P_{\left(x\right)}=4x^3+x^2-2x+7\)
\(b,M_{\left(x\right)}=P_{\left(x\right)}+Q_{\left(x\right)}\\ M_{\left(x\right)}=4x^3+x^2-2x+7-4x^3-x^2+4x-3\\ M_{\left(x\right)}=2x+4\)
\(N_{\left(x\right)}=4x^3+x^2-2x+7+4x^2+x^2-4x+3\\ N_{\left(x\right)}=8x^3+2x^2-6x+10\)
\(c,M_{\left(x\right)}=0\\ \Rightarrow2x+4=0\\ \Rightarrow2x=-4\\ \Rightarrow x=-2\)
a: \(P\left(x\right)=4x^3+x^2-2x+7\)
\(Q\left(x\right)=-4x^3-x^2+4x-3\)
b: \(M\left(x\right)=4x^3+x^2-2x+7-4x^3-x^2+4x-3=2x+4\)
\(N\left(x\right)=8x^3+2x^2-6x+10\)
c: Đặt M(x)=0
=>2x+4=0
hay x=-2
a: \(C\left(x\right)=A\left(x\right)+B\left(x\right)\)
\(=3x^4-4x^3+5x^2-4x-3-3x^4+4x^3-5x^2+2x+6\)
=-2x+3
b: Đặt C(x)=0
=>-2x+3=0
hay x=3/2
Ta có :
\(M\left(x\right)=-10x^3+\left(-x\right)-1\)
\(\Leftrightarrow-10x^3-x-1=0\)
Áp dụng Mode set up + Vector ta đc
\(x_1=0,393....;x_2=0,5...\)
Sửa đề : \(M\left(x\right)=-10x^4+2-x^2\)
Đặt \(x^2=t\left(t\ge0\right)\)
Suy ra : \(-10t^2+2-t=0\)
\(\left(-2t-1\right)\left(5t-2\right)=0\)
\(t=-\frac{1}{2};t=\frac{2}{5}\)
Với \(t=-\frac{1}{2}\Rightarrow x^2=-\frac{1}{2}\left(voli\right)\)
Với \(t=\frac{2}{5}\Rightarrow x^2=\frac{2}{5}\Rightarrow x=\frac{\sqrt{10}}{5}\)
m(x) = -4x3 + 14x2 + 10x - 11
Để m(x) có nghiệm
=> -4x3 + 14x2 + 10x - 11 = 0
=> -4x3 + 14x2 + 10x = 11
=> 2(-2x3 + 7x2 + 5x) = 11
Đến đây tôi cần bạn thêm dữ liệu là với x nguyên.
=> Vì 11 không chia hết cho 2 nên -2x3 + 7x2 + 5x không nguyên
mà x nguyên (nên -2x3 + 7x2 + 5x nguyên)
=> VÔ LÝ.
Vậy m(x) không có nghiệm.
m(x) = -4x3 + 14x2 + 10x - 11 Để m(x) có nghiệm => -4x3 + 14x2 + 10x - 11 = 0 => -4x3 + 14x2 + 10x = 11 => 2(-2x3 + 7x2 + 5x) = 11 Đến đây tôi cần bạn thêm dữ liệu là với x nguyên. => Vì 11 không chia hết cho 2 nên -2x3 + 7x2 + 5x không nguyên mà x nguyên (nên -2x3 + 7x2 + 5x nguyên) => VÔ LÝ. Vậy m(x) không có nghiệm.