Cho tam giác ABC có AB<AC ,phân giác AD,trung tuyến AM,đườngcao AH
a)So sánh độ dài cảu HB và HC
b) Chứng minh rằng HAC>1/2A
c) Nhận xét gì về vị trí cảu các tia AH,AD,AM
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔABC có AB<AC(gt)
mà HB là hình chiếu của AB trên BC(gt)
và HC là hình chiếu của AC trên BC(gt)
nên HB<HC
c) tia AD nằm giữa hai tia AH và AM
Δ AMB và Δ AMC có: AM chung MB =MC và AC > AB
=> AMC^ > AMB^ => M thuộc CH.(M ở giữa C và H)
AB<AC => B^ > C^ => BAH^ < CAH^ => D thuộc CH.(1)
theo tính chất phân giác:
BD/AB = CD/AC
mà: AC > AB => CD > BD => D thuộc BM (2)
(1) và (2) => D thuộc HM hay D là điểm nằm giữa H và M.
Bài làm thì dài lắm nên mik nói qua thôi
Bài 1
a) Vì AB=AC => tam giác ABC cân tại A
=>AH là đường trung tuyến ứng với BC mà trong tam giác cân đường trung tuyến cũng chính là đường phân giác và đường trung trực nên =>đpcm
b)Vì HK=HA ;BH=CH và AH vuông góc với BC nên ABKC là hình thoi(tứ giác có 2 đường chéo cắt nhau ở trung điểm mỗi đường và vuông góc với nhau)
=>AB song song với CK (tính chất 2 cạnh đối của hình thoi)
a) Trong tam giác ABC với giả thuyết AB<AC,suy ra HB<HC
b)Trong tam giác ABC với giả thuyết AB<AC,suy ra:
\(\widehat{B}<\widehat{C} \Leftrightarrow \widehat{C}-\widehat{B}>0\) .Trong tam giác ABC vuông tại H ta có:
\(\widehat{HAC}=90^o-\widehat{C}=\dfrac{1}{2}(\widehat{A}+\widehat{B}+\widehat{C})-\widehat{C}=\dfrac{\widehat{A}}{2}+\dfrac{\widehat{C}-\widehat{B}}{2}>\dfrac{\widehat{A}}{2}\)(đpcm)
c) Ta có nhận xét :\(\widehat{CAM}<\widehat{CAD}=\dfrac{\widehat{A}}{2}<\widehat{CAH}\)
Do đó AD nằm giữa hai tia AH và AM