Giúp mình với!
Cho a+b+ab=1. Tìm gtnn:
a, a^2 + b^2
b, a^3 + b^3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(A=\left(5xy-2xy+4xy\right)+3x-2y-y^2\)
\(=7xy+3x-2y-y^2\)
b: \(B=\left(\dfrac{1}{2}ab^2-\dfrac{7}{8}ab^2-\dfrac{1}{2}ab^2\right)+\left(\dfrac{3}{4}a^2b-\dfrac{3}{8}a^2b\right)\)
\(=\dfrac{-7}{8}ab^2+\dfrac{3}{8}a^2b\)
c: \(C=\left(2a^2b+5a^2b\right)+\left(-8b^2-3b^2\right)+\left(5c^2+4c^2\right)\)
\(=7a^2b-11b^2+9c^2\)
a, \(\frac{2b+1}{10}=\frac{1}{a}\)
\(\Leftrightarrow\left(2b+1\right)a=10\)
\(\Leftrightarrow2ab+a=10\)
\(\Leftrightarrow2ab=10-a\)
\(\Rightarrow\begin{cases}a=2\\b=2\end{cases}\)
b, \(\frac{a}{4}-\frac{1}{2}=\frac{3}{b}\)
\(\Leftrightarrow\frac{a-2}{4}=\frac{3}{b}\)
\(\Leftrightarrow\left(a-2\right)b=12\)
\(\Rightarrow a-2=12b\)
Bạn thế a vô rồi tính b chẳng hạn : \(\begin{cases}a=14\\b=1\end{cases}\)
\(A=\frac{9a^5-ab^4-18a^4b+2b^5}{3a^2b^2+ab^4-6a^2b^3-2b^5}\)
\(=\frac{a\left(9a^4-b^4\right)-2b\left(9a^4-b^4\right)}{ab^2\left(3a^2+b^2\right)-2b^3\left(3a^2+b^2\right)}\)
\(=\frac{\left(9a^4-b^4\right)\left(a-2b\right)}{\left(3a^2+b^2\right)\left(ab^2-2b^3\right)}\)
\(=\frac{\left(3a^2-b^2\right)\left(3a^2+b^2\right)\left(a-2b\right)}{\left(3a^2+b^2\right)b^2\left(a-2b\right)}\)
\(=\frac{3a^2-b^2}{b^2}\)
\(=3.\left(\frac{a}{b}\right)^2-1=3.\left(\frac{2}{3}\right)^2-1=\frac{1}{3}\)