cho pt x2-mx-m-1=0. Tìm GTNN của biểu thức S=\(\frac{m^2+2m}{x^2_1+x^2_2+2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Delta=\left(2m+3\right)^2-4m=4m^2+12m+9-4m=4m^2+8m+9\)
\(=4\left(m^2+2m+1-1\right)+9=4\left(m+1\right)^2+5\ge5>0\forall m\)
Vậy pt luôn có 2 nghiệm pb
\(\left\{{}\begin{matrix}x_1+x_2=2m+3\\x_1x_2=m\end{matrix}\right.\)Ta có : \(x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2\)
\(\left(2m+3\right)^2-2m=4m^2+12m+9-2m=4m^2+10m+9\)
\(=4m^2+\dfrac{2.2m.10}{4}+\dfrac{100}{16}-\dfrac{100}{16}+9\)
\(=\left(2m+\dfrac{10}{4}\right)^2+\dfrac{11}{4}\ge\dfrac{11}{4}\forall m\)
Dấu ''='' xảy ra khi x = -5/4
1.
\(a+b+c=0\) nên pt luôn có 2 nghiệm
\(\left\{{}\begin{matrix}x_1+x_2=m\\x_1x_2=m-1\end{matrix}\right.\)
\(A=\dfrac{2x_1x_2+3}{x_1^2+x_2^2+2x_1x_2+2}=\dfrac{2x_1x_2+3}{\left(x_1+x_2\right)^2+2}=\dfrac{2\left(m-1\right)+3}{m^2+2}=\dfrac{2m+1}{m^2+2}\)
\(A=\dfrac{m^2+2-\left(m^2-2m+1\right)}{m^2+2}=1-\dfrac{\left(m-1\right)^2}{m^2+2}\le1\)
Dấu "=" xảy ra khi \(m=1\)
2.
\(\Delta=m^2-4\left(m-2\right)=\left(m-2\right)^2+4>0;\forall m\) nên pt luôn có 2 nghiệm pb
Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=m\\x_1x_2=m-2\end{matrix}\right.\)
\(\dfrac{\left(x_1^2-2\right)\left(x_2^2-2\right)}{\left(x_1-1\right)\left(x_2-1\right)}=4\Rightarrow\dfrac{\left(x_1x_2\right)^2-2\left(x_1^2+x_2^2\right)+4}{x_1x_2-\left(x_1+x_2\right)+1}=4\)
\(\Rightarrow\dfrac{\left(x_1x_2\right)^2-2\left(x_1+x_2\right)^2+4x_1x_2+4}{x_1x_2-\left(x_1+x_2\right)+1}=4\)
\(\Rightarrow\dfrac{\left(m-2\right)^2-2m^2+4\left(m-2\right)+4}{m-2-m+1}=4\)
\(\Rightarrow-m^2=-4\Rightarrow m=\pm2\)
\(m>1\Rightarrow ac=-m-3< 0\Rightarrow\) pt luôn có 2 nghiệm trái dấu
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1x_2=-m-3\end{matrix}\right.\)
\(A=\dfrac{2\left(x_1+x_2\right)^2-6x_1x_2}{x_1+x_2}=\dfrac{2.4\left(m-1\right)^2+6\left(m+3\right)}{2\left(m-1\right)}\)
\(=\dfrac{4\left(m-1\right)^2+3\left(m-1\right)+12}{m-1}=4\left(m-1\right)+\dfrac{12}{m-1}+3\)
\(A\ge2\sqrt{4\left(m-1\right).\dfrac{12}{m-1}}+3=3+8\sqrt{3}\)
Dấu "=" xảy ra khi \(4\left(m-1\right)=\dfrac{12}{m-1}\Rightarrow m=1+\sqrt{3}\)
\(ac=-4< 0\Rightarrow\) pt luôn có 2 nghiệm pb trái dấu
Theo định lý Viet: \(\left\{{}\begin{matrix}x_1+x_2=m\\x_1x_2=-4\end{matrix}\right.\)
\(\Rightarrow A=\frac{2\left(x_1+x_2\right)+7}{\left(x_1+x_2\right)^2-2x_1x_2}=\frac{2m+7}{m^2+8}=1+\frac{2m+7}{m^2+8}-1\)
\(A=1+\frac{2m+7-m^2-8}{m^2+8}=1-\frac{\left(m-1\right)^2}{m^2+8}\le1\)
\(\Rightarrow A_{max}=1\) khi \(m=1\)
Để pt có nghiệm nguyên \(\Rightarrow\Delta=m^2+16\) là SCP
\(\Rightarrow m^2+16=k^2\Rightarrow\left(m-k\right)\left(m+k\right)=16\)
Bạn tự giải pt ước số, 16 nhiều ước quá nên làm biếng
Trả lời
a) Delta phương trình đó rồi xét 2 trường hợp
b) phần à delta lên sẽ tìm được m rồi thế vào là xong
Chắc vậy không chắc cho nắm
Giả sử ta định m sao cho pt \(x^2-mx+m-1=0\left(1\right)\) luôn có nghiệm.
Theo định lí Viet ta có: \(\left\{{}\begin{matrix}x_1+x_2=m\\x_1x_2=m-1\end{matrix}\right.\)
\(C=\dfrac{2x_1x_2+3}{x_1^2+x_2^2+2\left(x_1x_2+1\right)}=\dfrac{2x_1x_2+3}{\left(x_1+x_2\right)^2+2}=\dfrac{2\left(m-1\right)+3}{m^2+2}=\dfrac{2m+1}{m^2+2}\)
\(\Rightarrow C\left(m^2+2\right)=2m+1\Rightarrow Cm^2-2m+\left(2C+1\right)=0\left(2\right)\)
Coi phương trình (2) là phương trình ẩn m tham số C, ta có:
\(\Delta'=1^2-C.\left(2C+1\right)=-2C^2-C+1\)
Để phương trình (2) có nghiệm thì:
\(\Delta'\ge0\Rightarrow-2C^2-C+1\ge0\)
\(\Leftrightarrow\left(2C-1\right)\left(C+1\right)\le0\)
\(\Leftrightarrow-1\le C\le\dfrac{1}{2}\)
Vậy \(MinC=-1;MaxC=\dfrac{1}{2}\)
a, b bạn tự giải
c. \(\Delta=m^2+4>0;\forall m\Rightarrow\) pt luôn có nghiệm
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=m\\x_1x_2=-1\end{matrix}\right.\)
Ồ, đề câu d bạn ghi sai, 2 mẫu số phải có 1 cái là \(x_1\)
\(a-b+c=1+m-m-1=0\)
Phương trình luôn có 2 nghiệm: \(\left\{{}\begin{matrix}x_1=-1\\x_2=m+1\end{matrix}\right.\)
Do vai trò của \(x_1\) và \(x_2\) trong biểu thức S là như nhau nên ta có thể thay vào mà ko cần hoán vị \(x_1;x_2\):
\(S=\frac{m^2+2m}{\left(-1\right)^2+\left(m+1\right)^2+2}=\frac{\left(m+1\right)^2-1}{\left(m+1\right)^2+3}=1-\frac{4}{\left(m^2+1\right)^2+3}\)
\(S_{min}\) khi \(\frac{4}{\left(m+1\right)^2+3}\) lớn nhất, mà \(\frac{4}{\left(m+1\right)^2+3}\le\frac{4}{3}\)
\(\Rightarrow S_{min}=1-\frac{4}{3}=-\frac{1}{3}\) khi \(m+1=0\Leftrightarrow m=-1\)