Tìm m để hai phương trình sau tương đương
X – m = 0 và mx - 9 = 0.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có hai phương trình tương đương :
\(2x^2-8x+15=\left(2x-6\right)\left(mx-3m+1\right)\)
\(\Leftrightarrow2x^2-8x+15=m2x^2-\left(6m+6m+2\right)x+\left(18m-6\right)\)
Đồng nhất hệ số ta được :
\(\hept{\begin{cases}1=m\\8=12m+2\\15=18m-6\end{cases}}\) ?? Đề sai chăng ?? Không thể tồn tại m thỏa mãn.
Phương trình \(2x^2-8x+15=0\)có 2 nghiệm phức:
\(\orbr{\begin{cases}2-\frac{\sqrt{14}}{2}i\\2+\frac{\sqrt{14}}{2}i\end{cases}}\)
Mà phương trình \(\left(2x-6\right)\left(mx-3m+1\right)=0\)có 1 nghiệm bằng 3
Hai phương trình không có cùng tập nghiệm nên luôn không tương đương
Vậy không có m để hai phương trình tương đương.
Tìm xy biết xy+2x-5y=0( x, y thuộc Z)
\(\Rightarrow x(y+2)-5(y+2)=-10\)
\(\Rightarrow(x-5)(y+2)=-10\)
Vì \(x,y\in Z\Rightarrow x-5,y+2\in Z\)
Ta có bảng sau:
x-5 | 1 | -1 | -2 | -5 | 2 | 5 | 10 | -10 |
y+2 | -10 | 10 | 5 | 2 | -5 | -2 | -1 | 1 |
x | 6 | 4 | 3 | 0 | 7 | 10 | 15 | -5 |
y | -12 | 8 | 3 | 0 | -7 | -4 | -3 | -1 |
Chúc bạn học tốt!
Gọi nghiệm chung đó là x0
Có x0^2=mx0-2m-1
x0(mx0-2m+1)-1=0
<=>x0^2+2=mx0-2m+1
x0(x0^2+2)-1=0
Đến đây bạn tìm ra x0 rồi thay vào tìm m nhé
m = 3 , x = 3
thử lại
3 - 3 = 0 ; 3 x 3 - 9 = 0
=> m = 3
m = 3, x = 3