( \(\left(\frac{x}{10}-\frac{3}{2}\right)^2-\frac{1}{25}=0.\)
ngắn gọn v thoi
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(x^3-\frac{4}{25}x=0\)
\(\Leftrightarrow x\left(x+\frac{2}{5}\right)\left(x-\frac{2}{5}\right)=0\)
<=> x = 0
Xét 2 trường hợp:
\(\Leftrightarrow x+\frac{2}{5}=0\)
\(x=0-\frac{2}{5}\)
\(x=-\frac{2}{5}\)
\(\Leftrightarrow x-\frac{2}{5}=0\)
\(x=0+\frac{2}{5}\)
\(x=\frac{2}{5}\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x=\pm\frac{2}{5}\end{cases}}\)
b) \(\left(\frac{3}{8}+\frac{-3}{4}+\frac{7}{12}\right):\frac{5}{6}+\frac{1}{2}\)
\(=\left(\frac{3}{8}+\frac{-3}{4}+\frac{7}{12}\right):\frac{4}{3}\)
\(=\frac{13}{40}:\frac{4}{3}\)
\(=\frac{39}{120}=\frac{13}{40}\)
c) \(4\left(\frac{-1}{2}\right)^3-2\left(\frac{-1}{2}\right)^2+3\left(\frac{-1}{2}\right)-1\left(\frac{-1}{2}\right)^0\)
\(=4\left(\frac{-1}{2}\right)^3-2\left(\frac{-1}{2}\right)^3+3\left(\frac{-1}{2}\right)-1.1\)
\(=-\frac{1}{2}-\frac{1}{2}-\frac{3}{2}-1.1\)
\(=-\frac{5}{2}-1\)
\(=-\frac{7}{2}\)
\(a)\frac{{5{\rm{x}} + 10}}{{25{{\rm{x}}^2} + 50}} = \frac{{5\left( {x + 2} \right)}}{{25\left( {{x^2} + 2} \right)}} = \frac{{x + 2}}{{5\left( {{x^2} + 2} \right)}}\)
\(b)\frac{{45{\rm{x}}\left( {3 - x} \right)}}{{15{\rm{x}}{{\left( {x - 3} \right)}^2}}} = \frac{{3\left( {3 - x} \right)}}{{{{\left( {x - 3} \right)}^2}}}\)
\(c)\frac{{{{\left( {{x^2} - 1} \right)}^2}}}{{\left( {x + 1} \right)\left( {{x^3} + 1} \right)}} = \frac{{\left( {{x^2} - 1} \right)\left( {{x^2} - 1} \right)}}{{\left( {x + 1} \right)\left( {x + 1} \right)\left( {{x^2} - x + 1} \right)}} = \frac{{\left( {x + 1} \right)\left( {x - 1} \right)\left( {x + 1} \right)\left( {x - 1} \right)}}{{\left( {x + 1} \right)\left( {x + 1} \right)\left( {{x^2} - x + 1} \right)}} = \frac{{{{\left( {x - 1} \right)}^2}}}{{{x^2} - x + 1}}\)
a) Ta có: \(P = \frac{{x + 1}}{{{x^2} - 1}} = \frac{{x + 1}}{{\left( {x - 1} \right)\left( {x + 1} \right)}} = \frac{1}{{x - 1}}\)
Suy ra: \(Q = \frac{1}{{x - 1}}\)
b) Thay x = 11 vào P ta được: \(P = \frac{{11 + 1}}{{{{11}^2} - 1}} = \frac{1}{{10}}\)
Thay x = 11 vào Q ta được: \(Q = \frac{1}{{11 - 1}} = \frac{1}{{10}}\)
Hai kết quả P = Q tại x = 11
\(A=2-x\sqrt{\frac{x\left(x-2\right)}{\left(x-2\right)^2}+\frac{1}{\left(x-2\right)^2}}=2-x\sqrt{\frac{\left(x-1\right)^2}{\left(x-2\right)^2}}\)
\(=2-x\cdot\frac{x-1}{x-2}=\frac{2x-4}{x-2}-\frac{x^2-x}{x-2}=\frac{-x^2+3x-4}{x-2}\)
\(B=\frac{2\sqrt{5}x}{x-2}\cdot\left|x-2\right|+\frac{3\sqrt{5}x^2}{x}=\frac{2\sqrt{5}x}{x-2}\cdot\left|x-2\right|+3\sqrt{5}x\)
Với 0 < x < 2 \(B=-2\sqrt{5}x+3\sqrt{5}x=\sqrt{5}x\)
Với x > 2 \(B=2\sqrt{5}x+3\sqrt{5}x=5\sqrt{5}x\)
\(C=\frac{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}{\sqrt{x}\left(\sqrt{x}+5\right)}+\sqrt{\frac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-5\right)^2}}=\frac{\sqrt{x}-5}{\sqrt{x}}+\left|\frac{\sqrt{x}-1}{\sqrt{x}-5}\right|\)
Với 0 < x < 1 \(C=\frac{\sqrt{x}-5}{\sqrt{x}}+\frac{\sqrt{x}-1}{\sqrt{x}-5}=\frac{x-10\sqrt{x}+25}{x\left(\sqrt{x}-5\right)}+\frac{x-\sqrt{x}}{x\left(\sqrt{x}-5\right)}=\frac{2x-11\sqrt{x}+25}{x\left(\sqrt{x}-5\right)}\)
Với 1 < x < 5 \(C=\frac{\sqrt{x}-5}{\sqrt{x}}-\frac{\sqrt{x}-1}{\sqrt{x}-5}=\frac{x-10\sqrt{x}+25}{x\left(\sqrt{x}-5\right)}-\frac{x-\sqrt{x}}{x\left(\sqrt{x}-5\right)}=\frac{-9\sqrt{x}+25}{x\left(\sqrt{x}-5\right)}\)
Với x > 5 \(C=\frac{\sqrt{x}-5}{\sqrt{x}}+\frac{\sqrt{x}-1}{\sqrt{x}-5}=\frac{x-10\sqrt{x}+25}{x\left(\sqrt{x}-5\right)}+\frac{x-\sqrt{x}}{x\left(\sqrt{x}-5\right)}=\frac{2x-11\sqrt{x}+25}{x\left(\sqrt{x}-5\right)}\)
a.\(\frac{5}{4}x^2y.\left(\frac{-5}{6}xy\right)^0\left(\frac{-7}{3}xy\right)\)= \(\frac{5}{4}x^2y.1.\left(\frac{-7}{3}xy\right)\)= \(\frac{-35}{12}x^3.y^2\)
câu b, c,d làm tương tự như trên nha ^.^
\(A=\left(\frac{x^2}{x^3-4x}+\frac{6}{6-3x}+\frac{1}{x+2}\right):\left(x-2+\frac{10-x^2}{x+2}\right)\)
\(=\left[\frac{x^2}{x\left(x^2-4\right)}+\frac{-6}{3\left(x-2\right)}+\frac{1}{x+2}\right]:\left[\frac{\left(x-2\right)\left(x+2\right)}{x+2}+\frac{10-x^2}{x+2}\right]\)
\(=\left[\frac{x}{\left(x-2\right)\left(x+2\right)}+\frac{-2}{x-2}+\frac{1}{x+2}\right]:\left[\frac{x^2-4}{x+2}+\frac{10-x^2}{x+2}\right]\)
\(=\left[\frac{x}{\left(x-2\right)\left(x+2\right)}+\frac{-2\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\frac{x-2}{\left(x-2\right)\left(x+2\right)}\right]:\left[\frac{x^2-4+10-x^2}{x+2}\right]\)
\(=\frac{x-2x-4+x-2}{\left(x-2\right)\left(x+2\right)}:\frac{6}{x+2}=\frac{-6}{\left(x-2\right)\left(x+2\right)}.\frac{x+2}{6}=\frac{-1}{x-2}\)
\(\left(\frac{x}{10}-\frac{3}{2}\right)^2-\frac{1}{25}=0\)
=> \(\left(\frac{x}{10}-\frac{3}{2}\right)^2=\frac{1}{25}=\left(\frac{1}{5}\right)^2\)
=> \(\orbr{\begin{cases}\frac{x}{10}-\frac{3}{2}=\frac{1}{5}\\\frac{x}{10}-\frac{3}{2}=-\frac{1}{5}\end{cases}}\)
=> \(\orbr{\begin{cases}\frac{x}{10}=\frac{17}{10}\\\frac{x}{10}=\frac{13}{10}\end{cases}}\)
=> \(\orbr{\begin{cases}x=17\\x=13\end{cases}}\)
\(\left(\frac{x}{10}-\frac{3}{2}\right)^2-\frac{1}{25}=0\)
\(\left(\frac{x}{10}-\frac{3}{2}\right)^2=0+\frac{1}{25}\)
\(\left(\frac{x}{10}-\frac{3}{2}\right)^2=\frac{1}{25}\)
\(\left(\frac{x}{10}-\frac{3}{2}\right)^2=\left(\frac{1}{5}\right)^2\)
\(\Rightarrow\frac{x}{10}-\frac{3}{2}=\frac{1}{5}\)
\(\frac{x}{10}=\frac{1}{5}+\frac{3}{2}\)
\(\frac{x}{10}=\frac{17}{10}\)
\(\Rightarrow x.10=17.10\)
\(\Rightarrow x.10=170\)
\(\Rightarrow x=170:10\)
\(\Rightarrow x=17\)
~ Hok tốt ~