K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 5 2019

Cho b là số nguyên tố lớn hơn 3. Chứng minh :   A = 3n +2 + 1993b2 là hợp số.

- Ta viết:            A = 3(n + 1) + 1992b2 + (b2 - 1) = 3(n + 1) + 1992b2 + (b - 1)(b + 1) 

Có 3(n + 1) và  1992b2 đều chia hết cho 3. Khi b là số chia cho 3 dư 1 thì (b - 1) chia hết cho 3, còn khi b là số chia cho 3 dư 2 thì (b + 1) chia hết cho 3. Nghĩa là (b - 1)(b + 1) là số chia hết cho 3.

    A là tổng của ba số hạng, mà mỗi số hạng đều chia hết cho 3, vậy A chia hết cho 3. A là hợp số.

27 tháng 7 2016

chj ngu chứng tỏ lắm e ơi

18 tháng 2 2023

Vì p là số nguyên tố , p > 3

nên p = 3k + 1 hoặc p = 3q + 2 (k;q \(\inℕ^∗\)  )

Với p = 3k + 1 

thì 8p2 + 1 = 8.(3k + 1)2 + 1 = 8.(9k2 + 6k + 1) + 1

= 72k2 + 48k + 9 = 3(24k2 + 16k + 3) \(⋮3\)

=> 8p2 + 1 là hơp số (loại)

Với p = 3q + 2 

8p2 + 1 = 8(3q + 2)2 + 1 = 72q2 + 96q + 33 \(⋮3\)

=> p = 3q + 2 (loại) 

Vậy không tồn tại p để thỏa mãn điều kiện đề bài 

2 tháng 4 2018

  zdvdz

11 tháng 11 2014

A , p là ; snt lớn hơn 3 nên p có dạng :3k + 1 hoặc 3k + 2

 xét trường hợp p=3k+1 ta có 2p + 1 = 2(3k+1)+1 = 6k + 2 +1 = 6k + 3 (chia hết cho 3 nên là hợp số) ,LOẠI

xét trường hợp p=3k+2 ta có 2p +1= 2(3k+2) +1 = 6k +4 +1 = 6k + 5 ( là snt theo đề bài nên ta chọn trường hợp này)

vậy 4p + 1 = 4(3k+2)+1 = 12k + 8 + 1 = 12k + 9 ta thấy 12k và 9 đều chia hêt cho 3 nên (12k+9) là hợp số

do đó 4p + 1 là hợp số ( đpcm)

B ,  nếu p = 3k+1 thì 8p+1 = 8(3k+1)+1 = 24k + 8 +1 =24k+9 (chia hết cho 3 nên là hợp số) LOẠI

nếu  p = 3k + 2 thì 8p + 1 =8(3k+2) +1 =24k + 16 +1 =24k+17(là snt theo đề bài ) ta chọn t/ hợp này

vậy 4p +1 sẽ bằng 4(3k+2)+1 = 12k + 8 +1 =12k+9 (luân chia hết cho 3) nên là hợp số

chứng tỏ 4p+1 là hợp số (đpcm)

16 tháng 4 2016

Vì a và p là số nguyên tố lớn hơn 3 nên p sẽ có dạng : 3k+1

Nếu p= 3k+1 ta có 2p+1= 2(3k+1)+1= 6k+2+1=6k+2 là hợp số   (LOẠI)

VẬY ......................

AH
Akai Haruma
Giáo viên
2 tháng 9 2023

Lời giải:
Vì $p$ là số nguyên tố lớn hơn $3$ nên $p$ không chia hết cho 3. Nghĩa là $p$ chia $3$ dư $1$ hoặc $2$. 

Nếu $p$ chia $3$ dư $1$ thì $2p+1=2(3k+1)+1=6k+3=3(2k+1)\vdots 3$. Mà $2p+1>3$ với mọi $p>3$ nên $2p+1$ không là snt (trái với đề) 

$\Rightarrow p$ chia $3$ dư $2$. Đặt $p=3k+2$ với $k\in\mathbb{N}$
$\Rightarrow 4p+1=4(3k+2)+1=12k+9=3(4k+3)\vdots 3$. Mà $4p+1>3$ nên $4p+1$ là hợp số.