Giải hệ phương trình:
\(\int^{x+y=5}_{x-y=3}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ê cu bài phần a nè
(2)<=>X2(1-X3)+y2(1-y3)=0 (3)
từ (1) => 1-x3=y3;1-y3=x3
thay vào (3)ta được :x2.y3+y2.x3=0
<=>x2.y2.(x+y)=0 (tới đây tự lo liệu)
Cộng 2 vế ta đc : \(\left(\sqrt{2}+\sqrt{3}\right)x=2+\sqrt{6}\Rightarrow x=\sqrt{2}\)
Thay x = \(\sqrt{2}\) vào \(\sqrt{2}\) x + y = 2 ta đc:
\(\sqrt{2}.\sqrt{2}+y=2\Rightarrow2+y=2\Rightarrow y=0\)
Vậy (x;y) = (\(\sqrt{2}\) ; 0)
\(\int^{\sqrt{3}x-y=\sqrt{6}}_{\left(\sqrt{3}x-y\right)+\left(\sqrt{2}x+y\right)=\sqrt{6}+2}\Leftrightarrow\int^{\sqrt{3}x-y=\sqrt{6}}_{\left(\sqrt{3}+\sqrt{2}\right)x=\sqrt{6}+2}\Leftrightarrow\int^{y=0}_{x=\sqrt{2}}\)
Vậy \(\left(x;y\right)=\left(\sqrt{2};0\right)\)
Có: \(\left(x\sqrt{12-y}+\sqrt{y\left(12-x^2\right)}\right)^2\ge\left(x^2+12-x^2\right)\left(12-y+y\right)=12^2\)(Bunhiacopxki)
\(\Rightarrow x\sqrt{12-y}+\sqrt{y\left(12-x^2\right)}\ge12\)
Dấu "=" xảy ra <=> \(\frac{x}{\sqrt{12-y}}=\frac{\sqrt{12-x^2}}{\sqrt{y}}\)\(\Leftrightarrow\frac{x^2}{12-y}=\frac{12-x^2}{y}=\frac{x^2+12-x^2}{12-y+y}=1\)
\(\Rightarrow x^2=12-y\Rightarrow y=12-x^2\)
Có :\(x^3-8x-1=2\sqrt{12-x^2-2}=2\sqrt{10-x^2}\)
Đặt \(\frac{1}{y}=a\)
\(\int^{2x+3a=3}_{x-2a=5}\)
\(\Leftrightarrow\int^{2x+3a=3}_{2x-4a=10}\)
\(\Leftrightarrow\int^{7a=-7}_{x-2a=5}\)
\(\Leftrightarrow\int^{a=-1}_{x+2=5}\)
\(\Leftrightarrow\int^{\frac{1}{y}=-1}_{x=3}\)
\(\Leftrightarrow\int^{x=3}_{y=-1}\)
Trừ 2 vế ta đc : 2y = 8 => y = 4
Thay y = 4 vào x + y = 5 ta đc:
x + 4 = 5 => x = 1
Vậy x = 1 ; y = 4
hpt này mà cũng phải hỏi sao :v