Tìm số nguyên tố p để p+6;p+8;p+12 và p+14 đều là số nguyên tố.
(Trình bày cách làm giùm mình nha)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Nếu $p$ chia hết cho $3$ thì $p=3$ (do $p$ nguyên tố). Khi đó $p+6=3+6=9$ không là số nguyên tố (loại)
Nếu $p$ chia $3$ dư $1$. Đặt $p=3k+1$. Khi đó:
$p+8=3k+9=3(k+3)\vdots 3$. Mà $p+8>3$ nên $p+8$ không là snt (trái với yêu cầu - loại)
Nếu $p$ chia $3$ dư $2$. Đặt $p=3k+2$. Khi đó:
$p+4=3k+6=3(k+2)\vdots 3$. Mà $p+4>3$ nên $p+4$ không là snt (trái với yêu cầu - loại)
Vậy không tồn tại $p$ thỏa mãn đề.
Mọi số tự nhiên đều viết được dưới dạng 5k,5k+1,5k+2,5k+3,5k+4
Nếu p = 5k+1 suy ra p+14=5p+15=5﴾p+3﴿chia hết cho 5 ﴾loại﴿
Nếu p = 5k+2 suy ra p+8=5p+10=5﴾p+2﴿ chia hết cho 5 ﴾loại﴿
Nếu p = 5k+3 suy ra p+12=5p+15=5﴾p+3﴿ chia het cho 5 ﴾loại﴿
Nếu p = 5k+4 suy ra p+6= 5p+10=5﴾p+2﴿chia hết cho 5 ﴾loại
Vậy p chỉ có thể bằng 5k.mà p là nguyên tố nên p =5. Vậy p=5