K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a,b: Xét ΔHAB có

M là trung điểm của HA

N là trung điểm của HB

Do đó: MN là đường trung bình

=>MN//AB và MN=AB/2

=>MN//KC và MN=KC

=>NCKM là hình bình hành

c; Xét ΔBMC có

BH là đường cao

MN là đường cao

BH cắt MN tại N

DO đó:N là trực tâm

=>CN vuông góc với BM

=>BM vuông góc với MK

hay góc BMK=90 độ

a: Xét ΔHAB có

M là trung điểm của HA

N là trung điểm của HB

Do đó: MN là đường trung bình

=>MN//AB và MN=AB/2

hay MN//KC và MN=KC

=>MNCK là hình bình hành

b: Xét ΔBMC có

BH là đường cao

MNlà đường cao

BH cắt MN tại N 
Do đó: N là trực tâm

c: MK//NC

mà NC vuông góc với BM

nên MK vuông góc với BM

hay góc BMK=90 độ

27 tháng 10 2021

a: Xét ΔHAB có 

N là trung điểm của HB

M là trung điểm của HA

Do đó: NM là đường trung bình của ΔAHB

Suy ra: \(NM=\dfrac{AB}{2}=2\left(cm\right)\)

a: 

 Xét ΔBMC có

BH là đường cao

MN là đường cao

BH cắt MN tại N

DO đó:N là trực tâm

b:Xét ΔHAB có

M là trung điểm của HA

N là trung điểm của HB

Do đó: MN là đường trung bình

=>MN//AB và MN=AB/2

=>MN//KC và MN=KC

=>NCKM là hình bình hành

Vì N là trực tâm

nên CN vuông góc với BM

=>BM vuông góc với MK

hay góc BMK=90 độ

27 tháng 11 2017

M A N B D C K H

a) xét tam giác HBA ta có:

NH=NB 

MH=MA

=> MN là đường trung bình của tam giác HBA

=> MN//BA ; MN=1/2BA

b) xét tứ giác MNCK ta có:

MN//BA mà BA//CD 

=> MN//CD//CK (1)

MN=1/2BA

KC=KD

mà BA=CD

=> MN=CK (2)

từ (1) và (2) suy ra tứ giác MNCK là hình bình hành

c)...

a,b: Xét ΔHAB có

M là trung điểm của HA

N là trung điểm của HB

Do đó: MN là đường trung bình

=>MN//AB và MN=AB/2

=>MN//KC và MN=KC

=>NCKM là hình bình hành

c; Xét ΔBMC có

BH là đường cao

MN là đường cao

BH cắt MN tại N

DO đó:N là trực tâm

=>CN vuông góc với BM

=>BM vuông góc với MK

hay góc BMK=90 độ

17 tháng 8 2016

Ta đi c/m ^BMK=90o
=================
Từ K, D hạ đường vuông góc KN, DP xuống AC

Xét tam giác BMK, ta có:

BK^2=BC^2+CK^2 = BC^2+CD^2/4 (1)
BM^2=BH^2+MH^2 = BH^2+ AH^2/4 (2)
MK^2=MN^2+NK^2=MN^2+BH^2/4 (3)

Ta có MN= MH-NH = AH/2-NH=AH/2-(CN-CH)=AH/2-AH/2+CH =CH (Do CN=CP/2=AH/2)

=>MN =CH, thay vào (3)
=> MK^2 = CH^2 +BH^2/4 (4)

Để c/m ^BMK=90o, ta c/m BK^2 =BM^2 +MK^2 (*)

Thay (1), (2), (4) vào (*), , ta được

BC^2+CD^2/4= BH^2+AH^2/4+CH^2+BH^2/4 (**)
Do BC^2= BH^2+CH^2

(**) => CD^2/4= AH^2/4+BH^2/4
=> CD^2=AH^2+BH^2
=> AB^2 = AH^2+BH^2 , đúng do tam giác AHB vuông tại H

Vậy ^BMK =90o

17 tháng 8 2016

kb nhé

K,N xuất phát từ đâu bạn nhỉ??

a: Xét ΔHAB có

M là trung điểm của HA

N là trung điểm của HB

Do đó: MN là đường trung bình

=>MN//AB và MN=AB/2

=>MN//KC và MN=KC

=>NCKM là hình bình hành

b; Xét ΔBMC có

BH là đường cao

MN là đường cao

BH cắt MN tại N

DO đó:N là trực tâm

=>CN vuông góc với BM

=>BM vuông góc với MK

hay góc BMK=90 độ

31 tháng 7 2015

Gọi N là trung điểm BH =>MN đường trung bình của tam giác ABH

Ta có MN//AB và MN = \(\frac{1}{2}AB\)

Mà CK//AB và CK=\(\frac{1}{2}CD=\frac{1}{2}AB\) => CK=MN

 =>MNCK là hình bình hành

=> CK//MK (1)

Vì MN//AB, AB vuông góc BC nên MN vuông góc BC.

Suy ra N là trực tâm tam giác BCM  CN vuông góc với BM (2)

Từ (1) và (2) suy ra MK vuông góc với BM

6 tháng 10 2018

Bạn ơi CK//MK???WTF??

CN//MK mới đúng chứ