K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 5 2019

\(\frac{2}{n}+\frac{2}{n+1}=\frac{2\left(n+1\right)}{n\left(n+1\right)}+\frac{2n}{n\left(n+1\right)}\)\(=\frac{2\left(n+1\right)+2n}{n\left(n+1\right)}=\frac{2n+2+2n}{n\left(n+1\right)}=\frac{4n+2}{n\left(n+1\right)}\)

\(\frac{1}{n\left(n+1\right)}+\frac{-2}{n+1}=\frac{1}{n\left(n+1\right)}+\frac{-2n}{n\left(n+1\right)}\)\(=\frac{1+\left(-2n\right)}{n\left(n+1\right)}=\frac{1-2n}{n\left(n+1\right)}\)

15 tháng 5 2019

\(a,\)\(\frac{2}{n}\)và \(\frac{2}{n+1}\)

Có : \(\frac{2}{n}=\frac{2\left(n+1\right)}{n\left(n+1\right)}\)

\(\frac{2}{n+1}=\frac{2n}{n\left(n+1\right)}\)

Vậy ta có : \(\frac{2\left(n+1\right)}{n\left(n+1\right)}\)và \(\frac{2n}{n\left(n+1\right)}\)

15 tháng 5 2019

\(b,\)\(\frac{1}{n\left(n+1\right)}\)và \(\frac{-2}{n+1}\)

Có : \(\frac{1}{n\left(n+1\right)}\)

\(\frac{-2}{n+1}=\frac{-2n}{n\left(n+1\right)}\)

Vậy ta có : \(\frac{1}{n\left(n+1\right)}\)và \(\frac{-2n}{n\left(n+1\right)}\)

17 tháng 5 2019

a/ \(\frac{5}{6n}\)và \(\frac{7}{15}\)

=> MSC = \(6n\cdot15=90n\)

\(\Rightarrow\frac{5}{6n}=\frac{5\cdot15}{90n}=\frac{75}{90n}\)

\(\Rightarrow\frac{7}{15}=\frac{7\cdot6n}{90n}=\frac{42n}{90n}\)

b/  \(\frac{9x}{24}\)và \(\frac{12}{36}\)

=> MSC = 72

\(\Rightarrow\frac{9x}{24}=\frac{9x\cdot3}{72}=\frac{27x}{72}\)

\(\Rightarrow\frac{12}{36}=\frac{12\cdot2}{72}=\frac{24}{72}\)

18 tháng 5 2019

a)MSC = 6n . 15 = 90n

5/6n = 5 . 15/60n . 15 = 75/90n

7/15 = 7 . 6n/15 . 6n =42n/90n

            #Louis

2 tháng 8 2019

\(\left(-2\right).\left(-1\frac{1}{2}\right)\left(-1\frac{1}{3}\right).....\left(-1\frac{1}{2013}\right)\)

\(=\left(-2\right).\left(\frac{-3}{2}\right)\left(-\frac{4}{3}\right)......\left(\frac{-2014}{2013}\right)\)

\(=\frac{\left(-2\right).\left(-3\right).\left(-4\right)....\left(-2014\right)}{2.3.....2013}\)

\(=\frac{2.3.4....2014\left(\text{Vì có 2014 thừa số âm }\right)}{2.3....2013}\)

\(=\frac{\left(2.3.4....2013\right).2014}{2.3....2013}\)

\(=2014\)

26 tháng 10 2019

Ta có: 

\(1^4+\frac{1}{4}=\left(1^2-1+\frac{1}{2}\right)\left(1^2+1+\frac{1}{2}\right)=\frac{1}{2}.\left(2+\frac{1}{2}\right)\)

\(2^4+\frac{1}{4}=\left(2^2-2+\frac{1}{2}\right)\left(2^2+2+\frac{1}{2}\right)=\left(2+\frac{1}{2}\right).\left(6+\frac{1}{2}\right)\)

\(3^4+\frac{1}{4}=\left(3^2-3+\frac{1}{2}\right)\left(3^2+3+\frac{1}{2}\right)=\left(6+\frac{1}{2}\right).\left(12+\frac{1}{2}\right)\)

\(4^4+\frac{1}{4}=\left(4^2-4+\frac{1}{2}\right)\left(4^2+4+\frac{1}{2}\right)=\left(12+\frac{1}{2}\right).\left(20+\frac{1}{2}\right)\)

...

\(19^4+\frac{1}{4}=\left(19^2-19+\frac{1}{2}\right)\left(19^2+19+\frac{1}{2}\right)=\left(342+\frac{1}{2}\right).\left(380+\frac{1}{2}\right)\)

\(20^4+\frac{1}{4}=\left(20^2-20+\frac{1}{2}\right)\left(20^2+20+\frac{1}{2}\right)=\left(380+\frac{1}{2}\right).\left(420+\frac{1}{2}\right)\)

=> \(\frac{\left(1^4+\frac{1}{4}\right)\left(3^4+\frac{1}{4}\right)\left(5^4+\frac{1}{4}\right)...\left(19^4+\frac{1}{4}\right)}{\left(2^4+\frac{1}{4}\right)\left(4^4+\frac{1}{4}\right)\left(6^4+\frac{1}{4}\right)...\left(20^4+\frac{1}{4}\right)}\)

\(=\frac{\frac{1}{2}\left(2+\frac{1}{2}\right)\left(6+\frac{1}{2}\right)\left(12+\frac{1}{2}\right)...\left(342+\frac{1}{2}\right).\left(380+\frac{1}{2}\right)}{\left(2+\frac{1}{2}\right)\left(6+\frac{1}{2}\right)\left(12+\frac{1}{2}\right)\left(20+\frac{1}{2}\right)...\left(380+\frac{1}{2}\right).\left(420+\frac{1}{2}\right)}\)

\(=\frac{\frac{1}{2}}{420+\frac{1}{2}}=\frac{1}{841}\)

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

a) \( - \frac{1}{2} + \frac{1}{4} - \frac{1}{8} + ... + {\left( { - \frac{1}{2}} \right)^n} + ...\)

Tổng trên là tổng của cấp số nhân lùi vô hạn có số hạng đầu \({u_1} =  - \frac{1}{2}\) và công bội \(q =  - \frac{1}{2}\) nên: \( - \frac{1}{2} + \frac{1}{4} - \frac{1}{8} + ... + {\left( { - \frac{1}{2}} \right)^n} + ... = \frac{{ - \frac{1}{2}}}{{1 - \left( { - \frac{1}{2}} \right)}} =  - \frac{1}{3}\)

b) \(\frac{1}{4} + \frac{1}{{16}} + \frac{1}{{64}} + ... + {\left( {\frac{1}{4}} \right)^n} + ...\)

Tổng trên là tổng của cấp số nhân lùi vô hạn có số hạng đầu \({u_1} = \frac{1}{4}\) và công bội \(q = \frac{1}{4}\) nên: \(\frac{1}{4} + \frac{1}{{16}} + \frac{1}{{64}} + ... + {\left( {\frac{1}{4}} \right)^n} + ... = \frac{{\frac{1}{4}}}{{1 - \frac{1}{4}}} = \frac{1}{3}\)

18 tháng 5 2019

                                                               \(\text{ Bài giải }\)

\(a,\text{ }\frac{7n}{15}\text{ và }\frac{20}{39}\)

                   \(BCNN\left(15,39\right)=195\)

\(\frac{7n}{15}=\frac{7n\cdot13}{15\cdot13}=\frac{91n}{195}\)                                \(\frac{20}{39}=\frac{20\cdot5}{39\cdot5}=\frac{100}{195}\)

\(b,\text{ }\frac{14}{41}\text{ và }\frac{17n}{54}\)

                      \(BCNN\left(41,54\right)=2214\)

\(\frac{14}{41}=\frac{14\cdot54}{41\cdot54}=\frac{756}{2214}\)                               \(\frac{17n}{54}=\frac{17n\cdot41}{54\cdot41}=\frac{697n}{2214}\)