K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 2:

Xét ΔABC vuông tại C có

\(CB=BA\cdot\sin60^0=12\cdot\dfrac{\sqrt{3}}{2}=6\sqrt{3}\left(cm\right)\)

11 tháng 3 2022

cần bài nào?

11 tháng 3 2022

bài 1 ,2 mỗi đề í

có 4 đề thì mỗi đề chỉ càn làm bài 1 , bài 2 hoi ..

bạn có thể làm cho mình đc hông ạ

10 tháng 12 2023

a: Xét tứ giác ABQN có

\(\widehat{BQN}=\widehat{QNA}=\widehat{NAB}=90^0\)

=>ABQN là hình chữ nhật

b: Xét ΔCAD có

DN,CH là các đường cao

DN cắt CH tại M

Do đó: M là trực tâm của ΔCAD

=>AM\(\perp\)CD

c: Xét ΔHAB vuông tại H và ΔHCA vuông tại H có

\(\widehat{HAB}=\widehat{HCA}\left(=90^0-\widehat{ABC}\right)\)

Do đó: ΔHAB đồng dạng với ΔHCA

=>\(\dfrac{HA}{HC}=\dfrac{HB}{HA}\)

=>\(HA^2=HB\cdot HC\)

=>\(HA=\sqrt{HB\cdot HC}\)

 

10 tháng 12 2023

loading...  

16 tháng 8 2022

3. She said I should ask a lawyer.

4. Mrs Linh asked me to give Tuan this book.

5 tháng 11 2021

các bạn giúp mk với, mk đang gấp lắm, huhu

5 tháng 11 2021

undefined

mọi người ơi, đây có phải là đáp án đúng của bài 1 không ạ, nếu đúng thì giúp em viết ra giống như trên với ạ, em nhìn được nhưng 1 số chỗ không rõ lắm, huhu

Mọi người chỉ mình ạ! Bài 1: giải phương trình \(\sqrt{5x^2}=2x-1\)* Chỉ mình tại sao bài này nếu mà bình phương 2 vế lên có giải được ra kết quả đúng không ạ. Giair thích rõ và chi tiết giúp mình nhé * Với nhưng dạng thế nào thì có thể bình phương ạ! Bài 2: \(\sqrt{16x+16}-\sqrt{9x+9}=1\)* Với bài này mình chưa tìm điều kiện luôn mà giải ra thành \(\sqrt{x+1}=1\) rồi tìm điều kiện \(x+1\ge0\) cũng được ạ các bạn. * Nó...
Đọc tiếp

Mọi người chỉ mình ạ! 

Bài 1: giải phương trình 

\(\sqrt{5x^2}=2x-1\)

* Chỉ mình tại sao bài này nếu mà bình phương 2 vế lên có giải được ra kết quả đúng không ạ. Giair thích rõ và chi tiết giúp mình nhé 

* Với nhưng dạng thế nào thì có thể bình phương ạ! 

Bài 2: \(\sqrt{16x+16}-\sqrt{9x+9}=1\)

* Với bài này mình chưa tìm điều kiện luôn mà giải ra thành \(\sqrt{x+1}=1\) rồi tìm điều kiện \(x+1\ge0\) cũng được ạ các bạn. 

* Nó có phụ thuộc vào dạng bài không ạ hay là chỉ có những bài mới được làm như vậy còn chỉ có những bài thì phải tìm điều kiện ngay từ đầu ạ ( và làm như vậy có bị mất trường hợp nào đi không) . giải thích tại sao 

Bài 3: 

Ví dụ: \(x^2\ge2x\) . 

* Tại sao khi mà chia cả hai vế cho x thì chỉ nhân 1 trường hợp ( bị thiếu trường hợp). Còn khi mà chuyển vế sang cho lớn hơn hoặc bằng 0 thì lại đủ trường hợp. giải thích mình tại sao lại bị thiếu và đủ trường hợp ạ! 

Giups mình đầy đủ chỗ (*) nhá! 

5

Bài 1: 

ĐKXĐ: \(x\ge\dfrac{1}{2}\)

Ta có: \(\sqrt{5x^2}=2x-1\)

\(\Leftrightarrow5x^2=\left(2x-1\right)^2\)

\(\Leftrightarrow5x^2-4x^2+4x-1=0\)

\(\Leftrightarrow x^2+4x-1=0\)

\(\text{Δ}=4^2-4\cdot1\cdot\left(-1\right)=20\)

Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}x_1=\dfrac{-4-2\sqrt{5}}{2}=-2-\sqrt{5}\left(loại\right)\\x_2=\dfrac{-4+2\sqrt{5}}{2}=-2+\sqrt{5}\left(loại\right)\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
19 tháng 8 2021

Bài 1: Bình phương hai vế lên có giải ra được kết quả. Nhưng phải kèm thêm điều kiện $2x-1\geq 0$ do $\sqrt{5x^2}\geq 0$

PT \(\Leftrightarrow \left\{\begin{matrix} 2x-1\geq 0\\ 5x^2=(2x-1)^2\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq \frac{1}{2}\\ x^2+4x-1=0\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} x\geq \frac{1}{2}\\ (x+2)^2-5=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq \frac{1}{2}\\ (x+2-\sqrt{5})(x+2+\sqrt{5})=0\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} x\geq \frac{1}{2}\\ x=-2\pm \sqrt{5}\end{matrix}\right.\) (vô lý)

Vậy pt vô nghiệm.

2 tháng 12 2016

x : 3 dư 2

x : 5 dư 1

→ x + 4 chia hết cho 3 và 5

→ x + 4 € BC ( 3, 5 )

Ta có: 3 . 5 = 15

→ BC ( 3, 5 ) = B ( 15 ) = {0;15;30;45;...}

Dựa vào các điều kiện trên, ta kết luận: Vậy x € { 15;30 }

11 tháng 1 2023

a)

Áp dụng tính chất dãy tỉ số bằng nhau : 

\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{z}{6}=\dfrac{x+y+z}{3+5+6}=\dfrac{98}{14}=7\)

\(+)\)\(\dfrac{x}{3}=7\Rightarrow x=7\times3=21\)

\(+)\)\(\dfrac{y}{5}=7\Rightarrow y=7\times5=35\)

\(+)\)\(\dfrac{z}{6}=7\Rightarrow z=7\times6=42\)

Vậy \(x=21;y=35;z=42\)

b)

Áp dụng tính chất dãy tỉ số bằng nhau : 

\(\dfrac{x}{4}=\dfrac{y}{5}=\dfrac{z}{2}=\dfrac{x+y-z}{4+5-2}=\dfrac{21}{7}=3\)

\(+)\)\(\dfrac{x}{4}=3\Rightarrow x=3\times4=12\)

\(+)\)\(\dfrac{y}{5}=3\Rightarrow y=3\times5=15\)

\(+)\)\(\dfrac{z}{2}=3\Rightarrow z=3\times2=6\)

Vậy \(x=12;y=15;z=6\)

c)

Ta có : 

\(x:y:z=5:\left(-6\right):7\) và \(x-y-z=16\)

\(\Rightarrow\dfrac{x}{5}=\dfrac{y}{-6}=\dfrac{z}{7}\) và \(x-y-z=16\)

Áp dụng tính chất dãy tỉ số bằng nhau : 

\(\dfrac{x}{5}=\dfrac{y}{-6}=\dfrac{z}{7}=\dfrac{x-y-z}{5-\left(-6\right)-7}=\dfrac{16}{4}=4\)

\(+)\)\(\dfrac{x}{5}=4\Rightarrow x=4\times5=20\)

\(+)\)\(\dfrac{y}{-6}=4\Rightarrow y=4\times\left(-6\right)=-24\)

\(+)\)\(\dfrac{z}{7}=4\Rightarrow z=4\times7=28\)

Vậy \(x=20;y=-24;z=28\)

d)

Áp dụng tính chất dãy tỉ số bằng nhau : 

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{x+z}{2+4}=\dfrac{18}{6}=3\)

\(+)\)\(\dfrac{x}{2}=3\Rightarrow x=3\times2=6\)

\(+)\)\(\dfrac{y}{3}=3\Rightarrow y=3\times3=9\)

\(+)\)\(\dfrac{z}{4}=3\Rightarrow z=3\times4=12\)

Vậy \(x=6;y=9;z=12\)

e)

Áp dụng tính chất dãy tỉ số bằng nhau : 

\(\dfrac{x}{5}=\dfrac{y}{6}=\dfrac{z}{7}=\dfrac{x-y}{5-6}=\dfrac{36}{-1}=-36\)

\(+)\)\(\dfrac{x}{5}=-36\Rightarrow x=-36\times5=-180\)

\(+)\)\(\dfrac{y}{6}=-36\Rightarrow y=-36\times6=-216\)

\(+)\)\(\dfrac{z}{7}=-36\Rightarrow z=-36\times7=-252\)

Vậy \(x=-180;y=-216;z=-252\)

a: Áp dụng tính chất của DTSBN, ta được:

\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{z}{6}=\dfrac{x+y+z}{3+5+6}=\dfrac{98}{14}=7\)

=>x=21; y=35; z=42

b: x/4=y/5=z/2 và x+y-z=21

Áp dụng tính chất của DTSBN, ta được:

\(\dfrac{x}{4}=\dfrac{y}{5}=\dfrac{z}{2}=\dfrac{x+y-z}{4+5-2}=\dfrac{21}{7}=3\)

=>x=12; y=15; z=6

c: Áp dụng tính chất của DTSBN, ta được:

\(\dfrac{x}{5}=\dfrac{y}{-6}=\dfrac{z}{7}=\dfrac{x-y-z}{5+6-7}=\dfrac{16}{4}=4\)

=>x=20; y=-24; z=28

d: Áp dụng tính chất của DTSBN, ta được:

x/2=y/3=z/4=(x+z)/(2+4)=18/6=3

=>x=6; y=9; z=12