K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 11 2015

x^3+y^3=3xy-1

x^3+y^3-3xy+1=0

(x+y)^3-3xy(x+y)-3xy+1=0

(x+y+1)(x^2+2xy+y^2-x-y+1)-3xy(x+y+1)=0

(x+y+1)(x^2+2xy+y^2-x-y+1-3xy)=0

suy ra +)x+y+1=0.VÌ x,y thuộc N* nên x+y+1 khác 0

          +)x^2-xy+y^2+1-x-y=0

            2(x^2-xy+y^2+1-x-y)=0

            2x^2-2xy+2y^2+2-2x-2y=0

            (x^2-2xy+y^2)+(x^2-2x+1)+(y^2-2y+1)=0

            (x-y)^2+(x-1)^2+(y-1)^2=0

            suy ra +)x-y=0

                       +)x-1=0

                       +)y-1=0

                 Vậy x=y=1

19 tháng 10 2018

nếu x,y ko phải là số nguyên thì sao ???
 

`#3107.101107`

`D = x^3 - y^3 - 3xy` biết `x - y - 1 = 0`

Ta có:

`x - y - 1 = 0`

`=> x - y = 1`

`D = x^3 - y^3 - 3xy`

`= (x - y)(x^2 + xy + y^2) - 3xy`

`= 1 * (x^2 + xy + y^2) - 3xy`

`= x^2+ xy + y^2 - 3xy`

`= x^2 - 2xy + y^2`

`= x^2 - 2*x*y + y^2`

`= (x - y)^2`

`= 1^2 = 1`

Vậy, với `x - y = 1` thì `D = 1`

________

`E = x^3 + y^3` với `x + y = 5; x^2 + y^2 = 17`

`x + y = 5`

`=> (x + y)^2 = 25`

`=> x^2 + 2xy + y^2 = 25`

`=> 2xy = 25 - (x^2 + y^2)`

`=> 2xy = 25 - 17`

`=> 2xy = 8`

`=> xy = 4`

Ta có:

`E = x^3 + y^3`

`= (x + y)(x^2 - xy + y^2)`

`= 5 * [ (x^2 + y^2) - xy]`

`= 5 * (17 - 4)`

`= 5 * 13`

`= 65`

Vậy, với `x + y = 5; x^2 + y^2 = 17` thì `E = 65`

________

`F = x^3 - y^3` với `x - y = 4; x^2 + y^2 = 26`

Ta có:

`x - y = 4`

`=> (x - y)^2 = 16`

`=> x^2 - 2xy + y^2 = 16`

`=> (x^2 + y^2) - 2xy = 16`

`=> 2xy = (x^2 + y^2) - 16`

`=> 2xy = 26 - 16`

`=> 2xy = 10`

`=> xy = 5`

Ta có:

`F = x^3 - y^3`

`= (x - y)(x^2 + xy + y^2)`

`= 4 * [ (x^2 + y^2) + xy]`

`= 4 * (26 + 5)`

`= 4*31`

`= 124`

Vậy, với `x - y = 4; x^2 + y^2 = 26` thì `F = 124.`

5 tháng 5 2017

a) A = -1;                        b) B = ( x   +   y ) 3  =1.

15 tháng 10 2023

a) \(A=x^3+y^3+3xy\)

\(=x^3+y^3+3xy\left(x+y\right)\) (do \(x+y=1\))

\(=x^3+3x^2y+3xy^2+y^3\)

\(=\left(x+y\right)^3\) \(=1\)

b) \(B=x^3-y^3-3xy\)

\(=x^3-y^3-3xy\left(x-y\right)\) (do \(x-y=1\))

\(=x^3-3x^2y+3xy^2-y^3\)

\(=\left(x-y\right)^3\) \(=1\)

 

23 tháng 9 2021

\(a,x+y=1\Leftrightarrow\left(x+y\right)^3=1\Leftrightarrow x^3+y^3+3xy\left(x+y\right)=1\\ \Leftrightarrow x^3+y^3+3xy\cdot1=1\Leftrightarrow x^3+y^3+3xy=1\)

\(b,x^3-y^3-3xy\\ =x^3-3x^2y+3xy^2-y^3-3xy+3x^2y-3xy^2\\ =\left(x-y\right)^3-3xy\left(x-y-1\right)\\ =1^3-3xy\left(1-1\right)=1-0=1\)

\(c,x^3+y^3+3xy\left(x^2+y^2\right)+6x^2y^2\left(x+y\right)\\ =\left(x+y\right)\left(x^2-xy+y^2\right)+3xy\left[\left(x+y\right)^2-2xy\right]+6x^2y^2\\ =x^2-xy+y^2+3xy-6x^2y^2+6x^2y^2\\ =x^2+2xy+y^2=\left(x+y\right)^2=1\)

29 tháng 10 2017

Tính

\(A=x^3-3xy-y^3\)

\(A=x^3-y^3-3xy\)

\(A=\left(x-y\right)\left(x^2+xy+y^2\right)-3xy\)

\(A=x^2+xy+y^2-3xy\)

\(A=x^2-2xy+y^2\)

\(A=\left(x-y\right)^2\)

\(A=1^2\)

\(A=1\)

Vậy A=1

29 tháng 10 2017

\(A=x^3-3xy-y^3=x^3-3xy\left(x-y\right)-y^3\) ( vi x - y = 1)

\(=x^3-3x^2y+3xy^2-y^3=\left(x-y\right)^3=1^3=1\)

5 tháng 12 2016

x3-y3-3xy

= x3-3x2y+3xy2-y3-3xy+3x2y-3xy2

= (x-y)3+3xy(x-y-1)

=1+0

=1

h cho minh nha

6 tháng 12 2016

x3-y3-3xy=(x-y)(x2+xy+y2)-3xy

thay x-y=1 =>x2+xy+y2-3xy

                 =x2-2xy+y2

                 =(x-y)2

thay x-y=1=> 12=1

đúng thì cho

26 tháng 9 2021

\(x^3+y^3-2x^2-2y^2+3xy\left(x+y\right)-4xy+3\left(x+y\right)+10=\left[x^3+y^3+3xy\left(x+y\right)\right]-2\left(x^2+2xy+y^2\right)+3\left(x+y\right)+10=\left(x+y\right)^3-2\left(x+y\right)^2+3\left(x+y\right)+10=5^3-2.5^2+3.5+10=100\)

16 tháng 1 2021

Không hiểu sao cái dòng đó lại nhảy như thế. Mình đánh lại.

Giả thiết tương đương với:

\((x+y+1)(x^2+y^2+1-xy-x-y)=p\).

Do x + y + 1 > 1 và p là số nguyên tố nên x + y + 1 = p và \(x^2+y^2+1-x-y-xy=1\Leftrightarrow\left(x+y\right)^2-\left(x+y\right)=3xy\le\dfrac{3}{4}\left(x+y\right)^2\Rightarrow x+y\le4\Rightarrow p\le5\).

Ta thấy 5 là số nguyên tố. Đẳng thức xảy ra khi x = y = 2.

Vậy max p = 5 khi x = y = 2.

31 tháng 10 2019

Q =  x - y 3  +  y + x 3  +  y - x 3  – 3xy(x + y)

      = x 3  – 3 x 2 y + 3x y 2  – y 3  +  y 3  + 3 y 2 .x + 3y x 2  +  x 3  + y 3  – 3 y 2 .x +3y x 2  –  x 3  – 3 x 2 y – 3x y 2

      =  x 3  – 3 x 2 y + 3x y 2  –  y 3  +  y 3  + 3.x y 2  + 3 x 2 .y +  x 3  +  y 3  – 3x. y 2 + 3 x 2 .y –  x 3  – 3 x 2 y – 3x y 2

       = (  x 3  +  x 3  –  x 3 )+ ( - 3 x 2 y + 3 x 2 y+ 3 x 2 y – 3 x 2 y)+ (3x y 2  + 3x y 2  - 3x y 2 - 3x y 2 ) + (- y 3 +  y 3 +  y 3  )

       =  x 3  + 0 x 2 y + 0.x y 2  +  y 3

       =  x 3 + y 3