giải pt
\(\sqrt[3]{x+1}+\sqrt[3]{x-1}=\sqrt[3]{5x}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
giải pt
a)\(1+\sqrt{3x+1}=3x\)
b) \(\frac{\sqrt{5x+7}}{x+3}=4\)
c) \(\sqrt{2+\sqrt{3x}-5}=\sqrt{x+1}\)
a)\(1+\sqrt{3x+1}=3x\)\(\Leftrightarrow\sqrt{3x+1}=3x-1\Leftrightarrow3x+1=\left(3x-1\right)^2\)
\(\Leftrightarrow3x-1=9x^2-6x+1\Leftrightarrow9x^2-6x+1-3x+1=0\)
\(\Leftrightarrow9x^2-9x+2=0\Leftrightarrow9x^2-6x-3x+2=0\)
\(\Leftrightarrow3x\cdot\left(3x-2\right)-\left(3x-2\right)=0\Leftrightarrow\left(3x-1\right)\left(3x-2\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}3x-1=0\\3x-2=0\end{cases}\Leftrightarrow\left[\begin{array}{nghiempt}x=\frac{1}{3}\\x=\frac{2}{3\left[\right]}\end{array}\right.}\)
b. \(\frac{\sqrt{5x+7}}{x+3}=4\)
ĐKXĐ: \(x\ge-\frac{7}{5}\)
\(\Leftrightarrow\sqrt{5x+7}=4\left(x+3\right)\\ \Leftrightarrow\left(\sqrt{5x+7}\right)^2=\left[4\left(x+3\right)\right]^2\\ \Leftrightarrow5x+7=16\left(x^2+6x+9\right)\\ \Leftrightarrow5x+7=16x^2+96x+144\\ \Leftrightarrow16x^2+96x-5x+144-7=0\\ \Leftrightarrow16x^2+91x+137=0\\ \Leftrightarrow\left(4x\right)^2+2.4x.\frac{91}{8}+\frac{8281}{64}+\frac{487}{64}=0\\ \Leftrightarrow\left(4x+\frac{91}{8}\right)^2+\frac{487}{64}=0\left(1\right)\)
Mà \(\left(4x+\frac{91}{8}\right)^2\ge0\forall x\Rightarrow\left(4x+\frac{91}{8}\right)^2+\frac{487}{64}\ge\frac{487}{64}>0\forall x\)
\(\Rightarrow\) phương trình (1) không xảy ra.
Vậy không cógiá trị nào của x thỏa mãn phương trình.
Viết đề mà ko ai đọc được vậy :v
a) \(3x^2+2x+3=\left(3x+1\right)\sqrt{x^2+3}\)
\(\Leftrightarrow3x^2+2x+3-3x\sqrt{x^2+3}-\sqrt{x^2+3}=0\)
\(\Leftrightarrow x^2+3-x\sqrt{x^2+3}-\sqrt{x^2+3}-2x\sqrt{x^2+3}+2x^2+2x=0\)
\(\Leftrightarrow\sqrt{x^2+3}\cdot\left(\sqrt{x^2+3}-x-1\right)-2x\cdot\left(\sqrt{x^2+3}-x-1\right)=0\)
\(\Leftrightarrow\left(\sqrt{x^2+3}-x-1\right)\left(\sqrt{x^2+3}-2x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2+3}=x+1\left(x\ge-1\right)\\\sqrt{x^2+3}=2x\left(x\ge0\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=1\end{matrix}\right.\)\(\Leftrightarrow x=1\) ( thỏa mãn )
Vậy...
\(\left(4x-1\right)\sqrt{x^2+1}=2x^2+2x+1\) (1)
<=>\(\left(4x-1\right)\left[\sqrt{x^2+1}-\left(3-x\right)\right]=6x^2-11x+4\)
Xét \(\sqrt{x^2+1}+3-x=0\)
<=> \(x^2+1=x^2-6x+9\) <=>\(x=\frac{4}{3}\)(tm phương trình (1))
Xét \(\sqrt{x^2+1}+3-x\ne0\)
pt <=>\(\frac{\left(4x-1\right)\left(x^2+1-x^2+6x-9\right)}{\sqrt{x^2+1}+3-x}=\left(3x-4\right)\left(2x-1\right)\)
<=> \(\frac{\left(4x-1\right)\left(6x-8\right)}{\sqrt{x^2+1}+3-x}-\left(3x-4\right)\left(2x-1\right)=0\)
<=>\(\left(3x-4\right)\left(\frac{2\left(4x-1\right)}{\sqrt{x^2+1}+3-x}-2x+1\right)=0\)
<=>\(\left[{}\begin{matrix}x=\frac{4}{3}\left(tm\right)\\\frac{8x-2}{\sqrt{x^2+1}+3-x}-2x+1=0\left(2\right)\end{matrix}\right.\)
pt (2) <=>\(8x-2=\left(2x-1\right)\sqrt{x^2+1}-2x^2+7x-3\)
<=>\(2x^2+x+1=\left(2x-1\right)\sqrt{x^2+1}\)( đk: \(x\ge\frac{1}{2}\))
=>\(4x^4+x^2+1+4x^3+2x+4x^2=\left(2x-1\right)^2\left(x^2+1\right)\)
<=>\(4x^4+4x^3+5x^2+2x+1=4x^4-4x^3+5x^2-4x+1\)
<=>\(8x^3+6x=0\) <=> \(x\left(8x^2+6\right)=0\) <=>x=0 (do 8x2+6>0) (không t/m (2))
=>(2) vô nghiệm
Vậy pt có tập nghiệm \(S=\left\{\frac{4}{3}\right\}\)
P/s: Hơi dài :)
a.
ĐKXĐ: \(x\ge1\)
\(\sqrt{x-1}+\sqrt{x^3+x^2+x+1}=1+\sqrt{\left(x-1\right)\left(x^3+x^2+x+1\right)}\)
\(\Leftrightarrow\sqrt{x-1}\left(\sqrt{x^3+x^2+x+1}-1\right)-\left(\sqrt{x^3+x^2+x+1}-1\right)=0\)
\(\Leftrightarrow\left(\sqrt{x-1}-1\right)\left(\sqrt{x^3+x^2+x+1}-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-1}=1\\\sqrt{x^3+x^2+x+1}=1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x^3+x^2+x=0\end{matrix}\right.\)
\(\Leftrightarrow...\)
b.
ĐKXĐ: \(x\ge-1\)
\(x^2-6x+9+x+1-4\sqrt{x+1}+4=0\)
\(\Leftrightarrow\left(x-3\right)^2+\left(\sqrt{x+1}-2\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-3=0\\\sqrt{x+1}-2=0\end{matrix}\right.\)
\(\Leftrightarrow x=3\)
c.
ĐKXĐ: \(-2\le x\le\dfrac{4}{5}\)
\(VT=2x+3\sqrt{4-5x}+1.\sqrt{x+2}\)
\(VT\le2x+\dfrac{1}{2}\left(9+4-5x\right)+\dfrac{1}{2}\left(1+x+2\right)=8\)
Dấu "=" xảy ra khi và chỉ khi \(x=-1\)
a, ĐK: \(\left(x+1\right)\left(x^2+2x-1\right)\ge0\)
\(x^2+5x+2=4\sqrt{x^3+3x^2+x-1}\)
\(\Leftrightarrow x^2+2x-1+3\left(x+1\right)-4\sqrt{\left(x+1\right)\left(x^2+2x-1\right)}=0\)
TH1: \(x\ge-1\)
\(pt\Leftrightarrow\left(\sqrt{x^2+2x-1}-\sqrt{x+1}\right)\left(\sqrt{x^2+2x-1}-3\sqrt{x+1}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2+2x-1}=\sqrt{x+1}\\\sqrt{x^2+2x-1}=3\sqrt{x+1}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2+2x-1=x+1\\x^2+2x-1=9x+9\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2+x-2=0\\x^2-7x-10=0\end{matrix}\right.\)
\(\Leftrightarrow...\)
TH2: \(x< -1\)
\(pt\Leftrightarrow\left(\sqrt{-x^2-2x+1}-\sqrt{-x-1}\right)\left(\sqrt{-x^2-2x+1}-3\sqrt{-x-1}\right)=0\)
\(\Leftrightarrow...\)
Bài này dài nên ... cho nhanh nha, đoạn sau dễ rồi
\(\sqrt[3]{x+1}+\sqrt[3]{x-1}=\sqrt[3]{5x}\)
<=> \(\left(\sqrt[3]{x+1}+\sqrt[3]{x-1}\right)^3=5x\)
<=> \(\left(2x\right)^3-3\left(x+1\right)\left(x-1\right)2x=5x\)
<=> \(8x^3-6x\left(x^2-1\right)=5x\)
<=> \(8x^3-6x^3+6x-5x=0\)
<=> \(2x^3+x=0\)
<=> \(x\left(2x^2+1\right)=0\)
<=>\(\orbr{\begin{cases}x=0\\2x^2+1=0\end{cases}}\)
Mà \(2x^2\ge0\)=> \(2x^2+1\ge1>0\)
<=> x=0
\(S=\left\{0\right\}\)
\(\Leftrightarrow x+1+x-1+3\sqrt[3]{x^2-1}\left(\sqrt[3]{x+1}+\sqrt[3]{x-1}\right)=5x\)
\(\Leftrightarrow\sqrt[3]{x^2-1}.\sqrt[3]{5x}=x\)
\(\Leftrightarrow5x\left(x^2-1\right)=x^3\)
\(\Leftrightarrow x\left(4x^2-5\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=\pm\frac{\sqrt{5}}{2}\end{matrix}\right.\)