Giúp mk vs !!!!!!!!!!!!!!!!!!!!! Please!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
\(A=\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+...+\frac{1}{30}.CMR:\frac{5}{6}< A< \frac{77}{60}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{1}{90}-\frac{1}{72}-\frac{1}{56}-\frac{1}{42}-\frac{1}{30}-\frac{1}{20}-\frac{1}{12}-\frac{1}{6}-\frac{1}{2}\)
\(A=\frac{1}{10.9}-\frac{1}{9.8}-\frac{1}{8.7}-\frac{1}{7.6}-\frac{1}{6.5}-\frac{1}{5.4}-\frac{1}{4.3}-\frac{1}{3.2}-\frac{1}{2.1}\)
\(-A=\left(\frac{1}{10.9}+\frac{1}{9.8}+\frac{1}{8.7}+\frac{1}{7.6}+...+\frac{1}{3.2}+\frac{1}{2.1}\right)\)
\(-A=\frac{1}{10}-\frac{1}{9}+\frac{1}{9}-\frac{1}{8}+\frac{1}{8}-\frac{1}{7}+...+\frac{1}{3}-\frac{1}{2}+\frac{1}{2}-1\)
\(-A=\frac{1}{10}-1=\frac{-9}{10}\Rightarrow A=\frac{9}{10}\)
\(A=\frac{1}{90}-\frac{1}{72}-\frac{1}{56}-\frac{1}{42}-\frac{1}{30}-\frac{1}{20}-\frac{1}{12}-\frac{1}{6}-\frac{1}{2}\)
\(=\frac{1}{90}-\left(\frac{1}{72}+\frac{1}{56}+\frac{1}{42}+\frac{1}{30}+\frac{1}{20}+\frac{1}{12}+\frac{1}{6}+\frac{1}{2}\right)\)
\(=\frac{1}{90}-\left(\frac{1}{8.9}+\frac{1}{7.8}+\frac{1}{6.7}+\frac{1}{5.6}+\frac{1}{4.5}+\frac{1}{3.4}+\frac{1}{2.3}+\frac{1}{1.2}\right)\)
\(=\frac{1}{90}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}\right)\)
\(=\frac{1}{90}-\left(1-\frac{1}{9}\right)=\frac{1}{90}-\frac{8}{9}=-\frac{79}{90}\)
Vậy A=-79/90
Tìm x :
x - 0,27 = \(\frac{73}{100}\)
x = \(\frac{73}{100}+0,27\)
x = 1
Cậu P khó quá mik chưa nghĩ ra cách tính nhanh nhất !
Cậu tự giải nhé !
Hok tốt
\(A=\left(-\frac{5}{11}\right).\frac{7}{15}+\frac{11}{-5}.\frac{30}{33}\)
\(A=-\frac{7}{33}+-2\)
\(A=-\frac{73}{33}\)
[ A] = -2
\(A=\left(\frac{1,5+1-0,75}{2,5+\frac{5}{3}-1,25}+\frac{0,375-0,3+\frac{3}{11}+\frac{3}{12}}{-0,625+0,5-\frac{5}{11}-\frac{5}{12}}\right):\frac{1890}{2005}+115\)
\(A=\left(\frac{\frac{3}{2}+1-\frac{3}{4}}{\frac{5}{2}+\frac{5}{3}-\frac{5}{4}}+\frac{\frac{3}{8}-\frac{3}{10}+\frac{3}{11}+\frac{3}{12}}{\frac{-5}{8}+\frac{1}{2}-\frac{5}{11}-\frac{5}{12}}\right):\frac{378}{401}+115\)
\(A=\left(\frac{3.\left(\frac{1}{2}+\frac{1}{3}-\frac{1}{4}\right)}{5.\left(\frac{1}{2}+\frac{1}{3}-\frac{1}{4}\right)}+\frac{-3.\left(\frac{-1}{8}+\frac{1}{10}-\frac{1}{11}-\frac{1}{12}\right)}{5.\left(\frac{-1}{8}+\frac{1}{10}-\frac{1}{11}-\frac{1}{12}\right)}\right).\frac{401}{378}+115\)
\(A=\left(\frac{3}{5}+\frac{-3}{5}\right).\frac{401}{378}+115\)
\(A=0.\frac{401}{378}+115=115\)
A = \(\left(\frac{1,5+1-0,75}{2,5+\frac{5}{3}-1,25}+\frac{0,375-0,3+\frac{3}{11}+\frac{3}{12}}{-0,625+0,5-\frac{5}{11}-\frac{5}{12}}\right):\frac{1890}{2005}+115\)
= \(\left(\frac{\frac{3}{2}+\frac{3}{3}-\frac{3}{4}}{\frac{5}{2}+\frac{5}{3}-\frac{5}{4}}+\frac{\frac{3.125}{100}-\frac{3}{10}+\frac{3}{11}+\frac{3}{12}}{-\frac{5.125}{100}+\frac{5}{10}-\frac{5}{11}-\frac{5}{12}}\right):\frac{1890}{2005}+115\)
= \(\left(\frac{3\left(\frac{1}{2}+\frac{1}{3}-\frac{1}{4}\right)}{5\left(\frac{1}{2}+\frac{1}{3}-\frac{1}{4}\right)}+\frac{3\left(\frac{125}{100}-\frac{1}{10}+\frac{1}{11}+\frac{1}{12}\right)}{-5\left(\frac{125}{100}-\frac{1}{10}+\frac{1}{11}+\frac{1}{12}\right)}\right):\frac{1890}{2005}+115\)
= \(\left(\frac{3}{5}+-\frac{3}{5}\right):\frac{1890}{2005}+115\)
= 115
Ta có :
\(A=\left(\frac{1}{11}+\frac{1}{12}+...+\frac{1}{20}\right)+\left(\frac{1}{21}+\frac{1}{22}+...+\frac{1}{30}\right)\)
Ta thấy :
\(\frac{1}{20}< \frac{1}{11}\)
\(\frac{1}{20}< \frac{1}{12}\)
\(...\)
\(\frac{1}{20}< \frac{1}{19}\)
\(\Rightarrow\frac{1}{20}\cdot10< \frac{1}{11}+\frac{1}{12}+...+\frac{1}{20}\)
\(\Rightarrow\frac{1}{2}< \frac{1}{11}+\frac{1}{12}+...+\frac{1}{20}\)(1)
\(\frac{1}{30}< \frac{1}{21}\)
\(\frac{1}{30}< \frac{1}{22}\)
\(...\)
\(\frac{1}{30}< \frac{1}{29}\)
\(\Rightarrow\frac{1}{30}\cdot10< \frac{1}{21}+\frac{1}{22}+...+\frac{1}{30}\)
\(\Rightarrow\frac{1}{3}< \frac{1}{21}+\frac{1}{22}+...+\frac{1}{30}\)(2)
Từ (1),(2) :
\(\Rightarrow\frac{1}{2}+\frac{1}{3}< \frac{1}{11}+\frac{1}{12}+...+\frac{1}{30}\)
\(\Rightarrow\frac{5}{6}< A\)
\(#Louis\)