2/x*(x+2)+2/3*5+2/5*7+...2/99*101=100/101
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1
b;
B=1+ (7-5) + (11-9) + ...+(101-99)
B=1+2+2+..+2
B=1+25.2=51
2.
a.
ĐK : x+2 >=0 => x>=-2
\(\left|x+2\right|-x=2\\ \Rightarrow\left|x+2\right|=2+x\\ \Rightarrow\left[{}\begin{matrix}x+2=x+2\\x+2=-x-2\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}0x=0\\2x=-4\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}0x=0\\x=-2\end{matrix}\right.\)
Vậy x=-2
B=1+2-(3+4)+5+6-..-100+101
B=(3+11+19+...+195)-(7+15+...+199)+101
B=25.99-25.103+101
B=-100+101=1
Vậy B=1
A = 1*2*3 + 2*3*4 + 3*4*5 ... + 99*100*101
=> 4A = 1*2*3*4 + 2*3*4*4 + 3*4*5*4 + ... +99*100*101*4
=> 4A = 1*2*3*4 + 2*3*4*(5 - 1) + 3*4*5*( 6 - 2) + ... + 99*100*101*(102 - 98)
=> 4A = 1*2*3*4 + 2*3*4*5 - 1*2*3*4 + 3*4*5*6 - 2*3*4*5 + ... + 99*100*101*102 - 98*99*100*101
=> 4A = 99*100*101*102
=> 4A = 101989800
=> A = 25497450
\(\frac{2}{x.\left(x+2\right)}+\frac{2}{3.5}+\frac{2}{5.7}.+.....+\frac{2}{99.101}=\frac{100}{101}\)
\(\Rightarrow\frac{1}{x\left(x+1\right)}+\frac{1}{3.5}+\frac{1}{5.7}+....+\frac{1}{99.101}=\frac{100}{101}\)
\(\Rightarrow\frac{1}{x}-\frac{1}{x+1}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+....+\frac{1}{99}-\frac{1}{101}=\frac{100}{101}\)
\(\Rightarrow\frac{1}{x}-\frac{1}{101}=\frac{100}{101}\)
\(\Rightarrow\frac{1}{x}=\frac{101}{101}\)
\(\Rightarrow\frac{1}{x}=\frac{1}{1}\)
\(\Rightarrow x=1\)