K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 11 2015

Bạn vào đây nha http://olm.vn/hoi-dap/question/5720.html

23 tháng 10 2017

Chia hết cho 3

a) A = 2 + 22 + 23 +....... + 2100

A = ( 2+ 22) + (23 + 24) + ........ (299+2100)

A = 2(1+2) + 23(1+2) + ........+ 299(1+2)

A= 2. 3 + 23 . 3 + ........ + 299. 3

= 3 . ( 2 + 23 + .........+ 299)

Vì 3 chia hết cho 3 => 3. ( 2 + 23 + ........+299) chia hết cho 3 hay A chia hết cho 3

Chia hết cho 15 cũng tương tự như vậy nha bn!

Ghép 4 số rồi tính!

CHÚC BN HOK GIỎI!

23 tháng 10 2017

bạn làm giúp mình luôn chia hết cho 15 nha 

29 tháng 8 2018

Dễ thấy S có 100 số hạng nên ta có:

a,S=(2^1+2^2)+(2^3+2^4)+...+(2^99+2^100)

     =2(1+2)+2^3(1+2)+...+2^99(1+2)

     =3(2+2^3+...+2^99) chia hết cho 3

b,S=(2^1+2^2+2^3+2^4)+...+(2^97+2^98+2^99+2^100)

     =2(1+2+4+8)+...+2^97(1+2+4+8)

     =15(2+2^5+...+2^97) chia hết cho 15

29 tháng 8 2018

c, Ta có: 2S=2^2+2^3+...2^201

2S-S=2^201-2

Do 2^201=4^100 có chữ số tận cùng là 6

Nên 2^201-2 có chữ số tận cùng là 4

Hay S có chữ số tận cùng là 4

31 tháng 8 2020

c, Chữ số tận cùng của A là 0

21 tháng 10 2019

Ta có:

A=2 + 22 + 2+...+ 2100

=>2A=22 + 2+...+ 2101

=>2A-A=(22 + 2+...+ 2101)-(2+22+...+2100)

=>A=2101-2

23 tháng 10 2019

em không hiểu anh làm câu b chưa

24 tháng 7 2015

Rut gon:  S= 2+2^2+2^3+.................. + 2^100
              \(\Rightarrow\) 2S= 2 ( 2+2^2+2^3+.................. + 2^100 )
              2S= 2^2+2^3+.................. + 2^101

              2S-S= 2^101-2

 

 

 

 

25 tháng 7 2015

1) Nhóm 4 số hạng liên tiếp vào

2) Chữ số tận cùng là 2

3) Rút gọn S = 2101 - 2

11 tháng 10 2021

a) \(A=1+2+2^2+2^3+...+2^{99}\)

\(\Rightarrow2A=2+2^2+2^3+...+2^{100}\)

\(\Rightarrow A=2A-A=2+2^2+...+2^{100}-1-2-2^2-...-2^{99}=2^{100}-1\)

b) \(A=1+2+2^2+...+2^{99}=\left(1+2+2^2+2^3\right)+2^4\left(1+2+2^2+2^3\right)+...+2^{96}\left(1+2+2^2+2^3\right)\)

\(=15+2^4.15+...+2^{96}.15=15\left(1+2^4+...+2^{96}\right)\)

\(=3.5\left(1+2^4+...2^{96}\right)\) chia hết cho 3 và 5

c) \(A=1+2+2^2+...+2^{99}\)

\(=1+2\left(1+2+2^2\right)+...+2^{97}\left(1+2+2^2\right)\)

\(=1+2.7+...+2^{97}.7=1+7\left(2+...+2^{97}\right)\) chia 7 dư 1

=> A không chia hết cho 7