cho OM=3R. MA, MB là 2 tiếp tuyến. vẽ AD // MB. MD cắt đường tròn (O) tại C. BC cắt MA tại F. AC cắt MB tại E
a) Chứng minh: MAOB nội tiếp
b) Chứng minh: EB.EB = EC.EA
c) Chứng minh: E là trung điểm của MB
d) Chứng minh: BC.BM=MC.AB
e) Chứng minh: CF là tia phân giác của góc MCA
tran nguyen bao quanRibi Nkok Ngok giúp với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ một điểm M ở bên ngoài đường tròn tâm O, vẽ hai tiếp tuyến MA, MB với đường tròn (O)( A, B là các tiếp điểm). Gọi E là trung điểm của đoạn thẳng MA, tia EB cắt đường tròn (O) tại C. Tia MC cắt đường tròn (O) tại điểm thứ hai là D. Chứng minh rằng:
a. Tứ giác MAOB nội tiếp;
b. EA2 = EC.EB;
c. BD // MA.
Bạn tự vẽ hình nha
a)Xét tứ giác MAOB có:
\(\widehat{MAO}\)=90'(vì MA là tiếp tuyến của (O))
\(\widehat{MBO}\)=90'(vì MB là tiếp tuyến của (O))
Suy ra \(\widehat{MAO}\)+\(\widehat{MBO}\)=90'+90'=180'
Vậy tứ giác MAOB nội tiếp
b)Xét tam giác ABM có:
MA=MB(tính chất hai tiếp tuyến cắt nhau)
Do đó tam giác MAB là tam giác cân tại M
c)Xét tam giác IBF và IAB có:
\(\widehat{BIA}\)là góc chung
\(\widehat{IBF}\)=\(\widehat{IAB}\)(cùng bằng 1/2 sđ\(\widebat{BF}\))
Do đó tam giác IBF đồng dạng với IAB
Suy ra \(\frac{IB}{IF}=\frac{IA}{IB}\)
<=>\(IB^2=IA.IF\)
a: Xét tứ giác MAOB có \(\widehat{MAO}+\widehat{MBO}=180^0\)
nên MAOB là tứ giác nội tiếp
Xét (O) có
ΔADC nội tiếp
AC là đường kính
Do đó: ΔADC vuông tại D
Xét ΔCAM vuông tại A có AD là đường cao
nên \(AM^2=MB^2=MD\cdot MC\)
b: Xét (O) có
MA là tiếp tuyến
MB là tiếp tuyến
Do đó: MA=MB
hay M nằm trên đường trung trực của AB(1)
Ta có: OA=OB
nên O nằm trên đường trung trực của AB(2)
Từ (1) và (2) suy ra MO là đường trung trực của BA
hay MO⊥AB
Xét ΔMAO vuông tại A có AH là đường cao
nên \(MH\cdot MO=MA^2=MC\cdot MD\)
+) Gọi H là giao của AB và OM
MA; MB là tiếp tuyến của (O) => MA = MB => tam giác MAB cân tại M
mặt khác, MO là p/g góc AMB nên đồng thời là đường cao
=> OM vuông góc với AB hay OH vuông góc với AH
Áp dụng hệ thức lượng trong tam giác vuông OAM có: OA2
= OH.OM
=> OH = OA2
/ OM = 9/5 = 1,8 cm
=> MH = OM - OH = 5 - 1,8 = 3,2 cm
+) Áp dụng ĐL Pi - ta go trong tam giác vuông OAH có: AH2
= OA2
- OH2
= 9 - 1,82
= 5,76 => AH = 2,4 cm
Tam giác AOB cân tại O có OH là đường cao nên đồng thời là đường trung tuyến
=> AB = 2.AH = 2.2,4 = 4,8 cm
Vậy SMAB = MH.AB /2 = 3,2.4,8/2 = 7,68 cm^2
3R luôn á hả bạn?
Ừ