K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 5 2019

Ta có :

M = x3 + y3 = ( x + y ) ( x2 - xy + y2 ) = x2 + y2 - xy = ( x2 + 2xy + y2 ) - 3xy

= 1 - 3xy

Mà \(xy\le\frac{\left(x+y\right)^2}{4}\)\(\Rightarrow3xy\le\frac{3.\left(x+y\right)^2}{4}=\frac{3}{4}\)\(\Rightarrow-3xy\ge-\frac{3}{4}\)

\(\Rightarrow M=1-3xy\ge1-\frac{3}{4}=\frac{1}{4}\)

Dấu " = " xảy ra \(\Leftrightarrow\)x = y = 0,5

12 tháng 5 2019

Sửa đề là tìm min nhé! :) Em có một cách khác,khác với cách mà mọi người hay làm như sau:

Với mọi số thực k không âm,ta luôn có: \(\left(x+k\right)\left(x-\frac{1}{2}\right)^2\ge0\Leftrightarrow\left(x+k\right)\left(x^2-x+\frac{1}{4}\right)\ge0\)

\(\Leftrightarrow x^3-x^2+\frac{1}{4}x+kx^2-kx+\frac{1}{4}k\ge0\)

\(\Leftrightarrow x^3+\left(k-1\right)x^2-\left(k-\frac{1}{4}\right)x+\frac{1}{4}k\ge0\)

\(\Leftrightarrow x^3\ge-\left(k-1\right)x^2+\left(k-\frac{1}{4}\right)x-\frac{1}{4}k\)

Chọn k = 1 ta được: \(x^3\ge\frac{3}{4}x-\frac{1}{4}\).Tương tự với y ta được: \(y^3\ge\frac{3}{4}y-\frac{1}{4}\)

Cộng theo vế hai BĐT trên,ta được: \(M=x^3+y^3\ge\frac{3}{4}\left(x+y\right)-\frac{1}{2}=\frac{1}{4}\)

Dấu "=" xảy ra khi x = y = 1/2

Vậy...

15 tháng 5 2021

Ta có: 3x + y = 1 => y = 1 - 3x

a, Thay y = 1 - 3x vào M, ta có:

\(\Rightarrow M=3x^2+\left(1-3x\right)^2=3x^2+1-6x+9x^2=12x^2-6x+1=3\left(4x^2-2x+\frac{1}{3}\right)\)

\(=3\left(4x^2-2x+\frac{1}{4}+\frac{1}{12}\right)=3\left(2x-\frac{1}{2}\right)^2+\frac{3}{12}=3\left(2x-\frac{1}{2}\right)^2+\frac{1}{4}\)

Vì \(\left(2x-\frac{1}{2}\right)^2\ge0\forall x\)

\(\Rightarrow3\left(2x-\frac{1}{2}\right)^2\ge0\forall x\)

\(\Rightarrow3\left(2x-\frac{1}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}\forall x\)

Dấu "=" xảy ra <=> \(\hept{\begin{cases}2x-\frac{1}{2}=0\\3x+y=1\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}x=\frac{1}{4}\\y=1-3x=1-3.\frac{1}{4}=\frac{1}{4}\end{cases}}\)\(\Leftrightarrow x=y=\frac{1}{4}\)

Vậy GTNN M = 1/4 khi x = y = 1/4

b, Thay y = 1 - 3x vào N

\(\Rightarrow N=x\left(1-3x\right)=x-3x^2=-3\left(x^2-\frac{x}{3}+\frac{1}{36}-\frac{1}{36}\right)\)

\(=-3\left(x-\frac{1}{6}\right)^2-3.\left(-\frac{1}{36}\right)=-3\left(x-\frac{1}{6}\right)^2+\frac{1}{12}\)

Vì \(\left(x-\frac{1}{6}\right)^2\ge0\forall x\)

\(\Rightarrow-3\left(x-\frac{1}{6}\right)^2\le0\forall x\)

\(\Rightarrow-3\left(x-\frac{1}{6}\right)^2+\frac{1}{12}\le\frac{1}{12}\forall x\)

Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}x-\frac{1}{6}=0\\3x+y=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{6}\\y=1-3x=1-3.\frac{1}{6}=\frac{1}{2}\end{cases}}\)

Vậy GTLN N = 1/12 khi x = 1/6 và y = 1/2

14 tháng 10 2015

rất tiếc em mới học lớp 6

20 tháng 1 2022

dhgxkkkkkkkkkkkkkkkkkkkkk

20 tháng 1 2022

jnymrjd,5

11 tháng 5 2019

ta có : x+y=1

\(\Leftrightarrow x=1-y\)

khi đó ta có biểu thức M =(1-y)3+y3

= 1-3y+3y2-y3+y3

=3y2-3y+1

= 3(y2-y)+1

=3(y2-2.\(\frac{1}{2}y+\frac{1}{4}\))+1-3.\(\frac{1}{4}\)

= 3 (y-\(\frac{1}{2}\))2 +\(\frac{1}{4}\)\(\le\frac{1}{4}\)

Để M =\(\frac{1}{4}\)thì :

\(\Leftrightarrow3\left(y-\frac{1}{2}\right)^2=0\)

\(\Leftrightarrow\left(y-\frac{1}{2}\right)^2=0\)

\(\Leftrightarrow x-\frac{1}{2}=0\)

\(\Leftrightarrow x=\frac{1}{2}\)

Vậy Max M =\(\frac{1}{4}\Leftrightarrow x=\frac{1}{2}\)

11 tháng 5 2019

mk thiếu y=1-\(\frac{1}{2}=\frac{1}{2}\)

8 tháng 11 2018

5 tháng 11 2017

GTNN là gì z.tui ko  hiểu nên ko giải được!

GTNN là giá trị nhỏ nhất

14 tháng 11 2021

vãi cả 2015 ạ =))