tìm các số nguyên dương x,y thõa mãn 11/17 < x/y < 23/29 và 8x-9y=31
hép mi nha.Thanh kìu !!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bạn bấm vào đúng 0 sẽ ra kết quả
mình làm bài này rồi
Ta có:
\(8x+8y+8z< 8x+9y+10z\)
\(\Rightarrow x+y+z< \frac{100}{8}< 13\)
\(\Rightarrow Gt\Leftrightarrow11< x+y+z< 13\)
Mà x+y+z nguyên dương \(\Rightarrow x+y+z=12\)
Ta có hệ: \(\hept{\begin{cases}x+y+z=12\left(1\right)\\8x+9y+10z=100\left(2\right)\end{cases}}\)
Nhân 2 vế của (1) với 8 ta đc:
\(\hept{\begin{cases}8x+8y+8z=96\left(3\right)\\8x+9y+10z=100\left(2\right)\end{cases}}\)
Trừ theo vế của (2) cho (3) ta đc:\(y+2z=4\left(4\right)\).
Từ \(\left(4\right)\Rightarrow z=1\)(vì nếu \(z\ge2\), thì do\(y\ge1\Rightarrow y+2z\ge4\),Mâu thuẫn)
Với \(z=1\Rightarrow y=2;x=9\)
Vậy...
Do các số x,y,zx,y,z nguyên dương nên
x+y+z>11 suy ra x+y+z≥12
Có
100=8(x+y+z)+(y+2z)≥96+(y+2z)
Suy ra
4≥y+2z≥3
Tức là
y+2z ∈ {3;4}
Theo đề bài thì
8x+9y+10z=100
Số y là số chẵn .
Tức là y+2z cũng là số chẵn .
Suy ra
y+2z=4 Hay y=2; z=1
Thế ngược lại vào
8x+9y+10z=100 tìm được x=9
Vậy (x,y,z)=(9,2,1)
Có: 8x+8y+8z < 8x+9y+10z =100
=> x+y+z < 100/8 < 13
Ta lại có: x+y+z>11 nên 11< x+y+z < 13, nhưng x+y+z \(\in\)Z => x+y+z = 12
Ta có hệ: x+y+z = 12 (1)
=>8x+8y+8z=96 (2);
8x+9y+10z = 100 (3).
Trừ (3) cho (1),ta được:
y+2z = 4 (4)
Từ (4) suy ra z = 1 (vì nếu z ≥ 2 thì do y ≥ 1 => y+2z > 4,mâu thuẫn)
Với z = 1, thay vào (3), ta được:
\(y+2.1=4\Leftrightarrow y=4-2=2\)
Thay y = 2, z = 1 vào (1), ta được:
\(x+2+1=12\Leftrightarrow x=12-3=9\)
Vậy x = 9, y = 2, z = 1
Ta có:8x+8y+18z<8x+9y+10z=100\(\Rightarrow\)x+y+z<100/8<13
cùng với giả thiết ta có:11<x+y+z<13 nhưng x+y+z\(\in\)Z\(\Rightarrow\)x+y+z=12
Ta có:x+y+z=12(1);8x+9y+10z=100(2)
Nhân 2 vế của(1) với 8 rồi trừ vế của (2) cho (1) ta được y+2z=4(3)
Từ (3) suy ra z=1
Với z=1 ta được y=2;x=9
Vậy x=9;y=2;z=1
Em chuyển 9x = 8y - 31 thành 8b - 9b = 31 cho dễ làm ạ
Từ \(8b-9a=31\Rightarrow b=\frac{31+9a}{8}=\frac{32-1+8a+a}{8}\in N\)
\(\Rightarrow a-1⋮8\Rightarrow a=8k+1\left(k\in N\right)\Rightarrow b=\frac{31+72k+9}{8}=9k+5\)
\(\Rightarrow\frac{a}{b}=\frac{8k+1}{9k+5}\)Mà \(\frac{11}{17}< \frac{a}{b}< \frac{2329\Rightarrow11}{17}< \frac{8k+1}{9k+5}< \frac{23}{29} \)
+ Với \(\frac{11}{17}< \frac{8k+1}{9k+5}\Rightarrow11.\left(9k+5\right)< 17.\left(8k+1\right)\Rightarrow99k+55< 136k+17\Rightarrow37k>38\)
\(\Rightarrow k>\frac{38}{37}\Rightarrow k>1\) (1)
Với \(\frac{8k+1}{9k+5}< \frac{23}{29}\Rightarrow29.\left(8k+1\right)< 23.\left(9k+5\right)\Rightarrow232k+29< 207k+115\Rightarrow25k< 86\)
\(\Rightarrow k< \frac{86}{25}\Rightarrow k< 4\) (2)
Từ (1) và (2) suy ra \(1< k< 4\)mà \(k\in N\)nên \(k\in\left\{2;3\right\}\)
Với \(k=2\)thì \(\frac{a}{b}=\frac{17}{25}\)
Với \(k=3\)thì \(\frac{a}{b}=\frac{25}{32}\)
Vậy............